• Title/Summary/Keyword: Cellular Neural Networks

Search Result 61, Processing Time 0.023 seconds

An Implementation of $5\times{5}$ CNN Hardware and Pre.Post Processor ($5\times{5}$ CNN 하드웨어 및 전.후 처리기 구현)

  • 김승수;정금섭;전흥우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.416-419
    • /
    • 2003
  • The cellular neural networks have the circuit structure that differs from the form of general neural network. It consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template property. In this paper, time-multiplex image processing technique is applied for processing large images using small size CNN cell block, and we simulate the edge detection of a large image using the simulator implemented with a c program and matlab model. A 5$\times$5 CNN hardware and pre post processor is also implemented and is under test.

  • PDF

A STUDY ON DTCNN APPLYING FUZZY MORPHOLOGY OPERATORS (퍼지 형태학 연산자를 적용한 DTCNN 연구)

  • 변오성;문성룡
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.13-16
    • /
    • 2000
  • This paper is to compare DTCNN(Discrete-time Cellular Neural Networks) applying the fuzzy morphology operators with the conventional FCNN(Fuzzy CNN) using the general morphology operators. These methods are to the image filtering, and are compared as MSE. Also the main goal of this paper is to compare the fuzzy morphology operators with the general morphology operators through image input. In a result of computer simulation, we could know that the error of DTCNN applying the fuzzy morphology operators is less about 6.1809 than FCNN using the general morphology operators in the image included 10% noise, also the error of the former is less about 5.5922 than the latter in the image included 20% noise. And the image of DTCNN applying the fuzzy morphology operators is superior to FCNN using the general morphology operators.

  • PDF

A synthesis procedure for associative memories based on space-varying cellular neural networks (공간-변형 셀룰라 신경망 기반 연상 메모리 설계를 위한 새로운 방법론)

  • 김혜연;박주영;박연묵;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.472-474
    • /
    • 2000
  • 본 논문에서는 연상 메모리 기능을 수행하는 공간-변형 셀룰라 신경망의 설계 방법론을 제안한다. 셀룰라 신경망에 관한 알려진 결과들과 새로 도출된 이론을 기반으로, 주어진 양극 벡터들을 기대할만한 성능으로 기억할 수 있는 공간-변형 셀룰라 신경망을 얻는 설계 방법론을 제안한다. 본 논문에서 제안된 설계 방법론의 주요 부분은 일반화된 고유값 문제(GEVP)와 선형행렬 부등식 문제(LMIP)를 푸는 것으로 이루어지며, 이 문제들은 현재 내부점 방법에 의해 효과적으로 풀릴 수 있다. 제안된 방법의 정당성은 설계 예제를 통해서 증명한다.

  • PDF

Evolution and Behavior Analysis of Neural Networks based on Cellular Automata (셀룰라 오토마타 기반 신경망의 진화 및 행동분석)

  • Song, Geum-Beom;Jo, Seong-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • 최근 들어 생물학적 두뇌에 대한 관심이 높아지고 있으며, 그에 따라 인공두뇌의 개발이나 두뇌의 기능을 밝히고자 하는 시도가 활발히 이루어지고 있다. 특히 셀룰라 오토마타는 간단한 규칙들의 조합으로 복잡한 현상을 표현하는 모델로 복잡한 두뇌를 표현하기에 적합한 모델로 복잡한 두뇌를 표현하기에 적합한 모델일 기대된다. 셀룰라 오토마타 상에서 특정한 기능을 갖도록 신경망 모듈들을 진화시킨 후, 이들을 결합하여 인공두뇌를 개발하고자 하는 시도가 있다. 본 논문에서는 이러한 접근방식의 유용성을 보여주기 위하여 적당한 크기의 셀룰라 오토마타 공간에서 신경망을 만들어내어 이동 로봇의 제어기를 진화방법으로 구성하고자한다. 실험결과 로봇이 벽과 충돌하지 않고 잘 움직일 수 있도록 진화된 제어기를 얻을 수 있었다. 또한 다각적인 분석과정을 통해 진화된 제어기의 구조와 그 작동과정으 밝혀내고자 하였다.

Neural Networks based on Cellular Automata (셀룰라 오토마아에 기반한 신경망)

  • Cho, Yong-Goon;Shin, Suk-Young;Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.57-60
    • /
    • 1998
  • Darwin Machine은 자기 자신의 구조를 전자적인 속도로 진화해 나가는 하드웨어로서 복잡한 구조와 성질으 진화 기법을 사용하여 만들어 나가는 진화공학(Evolutionary Engineering)의 한 예이다. 하드웨어가 전자적인 속도로 진화하기 위해서는 각각으리 하드웨어 구성요소들이 병렬적으로 작동해햐 하는데 셀룰라 오토마타는 이러한 문제를 해결하는 적합한 구조이며, 하드췌어에 쉽게 이식할 수 있는 장점이 있다. 신경망의 학습 능력과 진한 연산을 이용하면 효율적인 진화를 유도할 수 있다. 본 논문에서는 이러한 하드웨어 구현을 위한 셀룰라 오토마타에 기반한 신경망을 보이고자 한다.

  • PDF

BiCMOS Random Pulse Generator for Neural Networks (신경회로망을 위한 BiCMOS 난수발생기)

  • 김규태;최규열;정덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.107-116
    • /
    • 1996
  • In the stochastic structure for doing exact calculationk, an input number must be changed to a pulse stream. Because the performance of random number generator (RNG) is controlled by its initial condition, we suggested newly modified cellular automata (MCA) which is uses a counter for boundary condition. We compared newly suggested MCA RNG to previously reported RNGs using the AND gate passing outputs which have the same meaning of multiplication in the stochastic calculation. In order to use stochastic we studied about the method, one large RNG can generate many small random numbers. In this method, RNG must have large drive capabilities for many input comparator. So we studied about drive capabilities using BiCMOS circuit and CMOS circit by SPICE.

  • PDF

Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells

  • Kim, Soo Min;Cho, Soo Young;Kim, Min Woong;Roh, Seung Ryul;Shin, Hee Sun;Suh, Young Ho;Geum, Dongho;Lee, Myung Ae
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.551-571
    • /
    • 2020
  • Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.

Adaptive morphological Wavelet-CNN Algorithm for the Color Image Edge detection (컬러 영상 에지 검출을 위한 적응 형태학적 WCNN 알고리즘)

  • Beak, Young-Hyun;Moon, Sung-Rung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.473-480
    • /
    • 2004
  • This paper presents a new edge detection algorithm in color image. The proposed Adaptive morphological Wavelet-CNN algorithm is divided into two parts : The Adaptive morpholog and WCNN(Wavelet Cellular Neural Networks). It detects the optimal edge with applying this color image to WCNN algorithm, after it does level up a boundary side of a color image by using the adaptive morphology as the threshold of an input color image. Also, it is used not a conventional fixed mask edge detection method but variable mask method which is called a variable BBM. Finally, to show the feasibility of the proposed algorithm, this paper provides by simulation that the color image consists of 30.

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability (MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링)

  • Yang, Seo-Min;Lee, Hyeok-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

Radioactive cDNA microarray in Neurospsychiatry (신경정신 의학분야의 방사성동위원소 표지 cDNA 마이크로어레이)

  • Choe, Jae-Gol;Shin, Kyung-Ho;Lee, Min-Soo;Kim, Meyoung-Kon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen loading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with ceil lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA In fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high qualify rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. in summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most practical experimental approach in studying psychiatric and neurodegenerative disorders, and other complex questions in the brain.