• 제목/요약/키워드: Cellular Neural Networks

검색결과 61건 처리시간 0.042초

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF

The Traffic Sign Classification by using Associative Memory in Cellular Neural Networks

  • Cheol, Shin-Yoon;Yeon, Jo-Deok;Kang Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.115.3-115
    • /
    • 2001
  • In this paper, discrete-time cellular neural networks are designed in order to function as associative memories by using Hebbian learning rule and non-cloning template. The proposed method has a very simple structure to design and to learn. Weights are updated by the connection between the neuron and its neighborhood. In the simulation, the proposed method is applied to the classification of a traffic sign pattern.

  • PDF

셀룰라 연상 신경회로망을 이용한 교통표지판 분류 (The Traffic Sign Classification by using Cellular Associative Neural Networks)

  • 신윤철;강훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.181-184
    • /
    • 2001
  • 인간 두뇌의 연상과 기억 작용의 모델링을 통한 구현의 일부분으로, 본 논문에서는 Hebb 의 학습방법과 non-cloning template를 사용하여 discrete-time cellular neural networks의 연상메모리 기능을 구현한다. 본 논문에서 사용된 학습방법은 각 셀의 인접한 셀과의 연결상태에 따라 하중값 메트릭스를 구현한다. 이러한 방법은 새로운 패턴의 추가 학습과 삭제가 쉽고, 또한 쉽게 구현 할 수 있는 장점이 있다. 이 방법으로 모의 실험에서는 교통표지판의 분류에 사용한다.

  • PDF

ON GLOBAL EXPONENTIAL STABILITY FOR CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Kwon, O.M.;Park, Ju-H.;Lee, S.M.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.961-972
    • /
    • 2008
  • In this paper, we consider the global exponential stability of cellular neural networks with time-varying delays. Based on the Lyapunov function method and convex optimization approach, a novel delay-dependent criterion of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI convex optimization problem, the interior point algorithm is utilized in this work. Two numerical examples are given to show the effectiveness of our results.

  • PDF

진화하는 셀룰라 오토마타를 이용한 자율이동로봇군의 행동제어 (Behavior Control of Autonomous Mobile Robots using ECANS1)

  • 이동욱;정영준;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2183-2185
    • /
    • 1998
  • In this paper, we propose a method of designing neural networks using biological inspired developmental and evolutionary concept. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual have adapted itself to the environment by evolution. Ontogeny of organism is embodied in cellular automata and phylogeny of species is realized by evolutionary algorithms. The connection among cells is determined by a rule of cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to navigation problem of robot.

  • PDF

샐룰라 오토마타 기법을 이용한 신경망의 자동설계에 관한 연구 (A Study on Automatic Design of Artificial Meural Networks using Cellular Automata Techniques)

  • 이동욱;심귀보
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.88-95
    • /
    • 1998
  • 본 논문은 인공생명 기법을 이용하여 생물의 정보처리 시스템을 구현하고자 하는 것이다. 자연계의 생물은 그 자체로 훌륭한 정보처리 시스템이다. 생물체는 하나의 생식 세포로부터 발생된다. 또한 이 개체의 종은 진화의 과정을 통해 환경에 적응한다. 본 논문에서는 이와 같은 생물학적인 발생과 진화의 개념을 이용하여 신경망을 설계하는 방법을 제안한다. 생물체의 개체발생은 발생모델의 하나인 셀룰라 오토마다(CA)를 통하여 구현하였고 진화과정은 진화 알고리즘(EAs)을 사용하였다. 우리는 이와 같이 구현한 '진화하는 셀룰라 오토마타 신경망'을 줄여서 ECANS1이라 명명하였다. 셀 사이의 연결은 CA 법칙에 의하여 결정되며, 셀의 초기 패턴이 진화함으로써 유용한 신경망을 찾아낸다. 신경망의 각 셀 즉 뉴런은 생물의 발화 ${\cdot}$ 비발화의 특성을 갖는 카오스 뉴런 모델을 사용하였다. 그리고 신경마의 최종 출력값은 뉴런의 발화 빈도로서 나타내었다. 제안한 방법은 Exclusive-OR 문제 및 패리티 문제에 적용함으로써 그 유효성을 검증하였다.

  • PDF

셀룰러 기반 무선 인지망에서 모바일 이동성과 신경망 스펙트럼 홀 예측에 의한 채널할당 (Channel Allocation Using Mobile Mobility and Neural Net Spectrum Hole Prediction in Cellular-Based Wireless Cognitive Radio Networks)

  • 이진이
    • 한국항행학회논문지
    • /
    • 제21권4호
    • /
    • pp.347-352
    • /
    • 2017
  • 본 논문에서는 셀룰러 기반 무선 인지망에서 스펙트럼 인지(CR)기술을 이용하여 모바일 사용자의 핸드오버 호의 손실확률을 줄이는 방법을 제안한다. 제안한 방법에서는 모바일이 방문할 셀을 Ziv-Lempel 알고리듬을 이용하여 예측하고, 방문할 셀에 할당된 채널이 부족할 때는 CR기술에 기초한 스펙트럼 홀 자원을 예측하여 모바일 사용자를 지원한다. 스펙트럼 홀 자원의 크기는 신경망기법으로 예측하며, 예측된 스펙트럼 홀 자원은 핸드오버 호가 초기 발생 호 보다 우선하여 사용할 수 있게 한다. 시뮬레이션을 통하여 셀룰러 이동 통신망에 CR기술을 사용함으로써 모바일 사용자의 핸드오버 호 손실확률을 줄일 수 있음을 보인다.

New Cellular Neural Networks Template for Image Halftoning based on Bayesian Rough Sets

  • Elsayed Radwan;Basem Y. Alkazemi;Ahmed I. Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.85-94
    • /
    • 2023
  • Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.

셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법 (Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks)

  • 신윤철;박용훈;강훈
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.154-162
    • /
    • 2003
  • 셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세포자동자와 같이 이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비전 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다. 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습에 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다.

셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성 (Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm)

  • 이상섭;이종섭;강맹규
    • 산업경영시스템학회지
    • /
    • 제23권61호
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF