• Title/Summary/Keyword: Cell-surface interaction

Search Result 214, Processing Time 0.031 seconds

Cytochemical and Biochemical Characteristics of Cellular Adhesion in Amoeba proteus (Amoeba proteus의 표면흡착에 관한 세포화학 및 생화학적 특성)

  • 안태인;곽인희
    • The Korean Journal of Zoology
    • /
    • v.29 no.3
    • /
    • pp.171-180
    • /
    • 1986
  • The effects of proteases, neuraminidase and EDTA on adhesion of amoebae on the substratum, ultrastructure and biochemical composition of the cell surface were studied by concanavalin A (con A) cytochemistry and SDS PAGE. By con A cytochemistry the glycocalyx of the plasmalemma was easily subdivided into outer filamentous (F) layer and the inner amorphous (A) layer. On treatment with neuraminidase, amoebae attached to the substratum and spreaded better than untreated cells exposing the more con A binding sites in A- and F-layer. When the cells were treated with trypsin or proteinase K, cells stayed unattached for 12 and 48 hr, respectively. Con A binding sites of A layer and all of those glycoproteins were removed by proteinase K. On the other hand, trypsin damaged all of the con A binding sites in both A- and F-layer without significant change in PAS-stained profile of the plasmalemma. Some of the mucopolysaccharides of the cell surface were released by these enzymes and EDTA. When the cells were incubated with monovalent con A they did not attch on the substratum and cytolysed. From these results adhesion of amoebae on the substratum appears to be mediated by the interaction of the glycoproteins and mucopolysaccharides of the A layer.

  • PDF

Microcontact Printing of Bacteria Using Hybrid Agarose Gel Stamp (혼성 아가로즈젤 스탬프를 이용한 박테리아 마이크로 컨택트 프린팅)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.273-278
    • /
    • 2006
  • The noble method of hybrid agarose gel microstamp fabricated by replica molding against PDMS master to make bacteria patterns on agar surface was presented. After the fabricated hybrid agarose gel microstamp was inked with E. coli, we could obtain 2 dimensional bacterial arrays with $50{\mu}m$ circular spots. And the various shaped patterns based on experimental design were easily generated. The analysis of mean fluorescent signal was showed that bacterial pattern have high contrast between spots and background and homogeneity of pattern. Our proposed method solved the problem of wetting and handling with small soft agarose gel microstamp when bacteria were used for ink. The agarose gel stamp provides appropriate environment to inked bacteria, which is essential technology for cell patterning with high retaining viability during the patterning process. This method is reproducible, convenient, rapid, and could be applied to screening system, study of cell-surface interaction, and microbial ecology.

Role of Lectins in Host Plant-Rhizobium Interactions (근류균과 숙주식물의 상호작용에 관한 렉틴의 역할)

  • Chang Moo Ung;Jeune Kyung Hee;Park Won Hark
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.293-299
    • /
    • 1983
  • Experiments were carried out to elucidate the specific interactions between host plant, Phaseolus vulgaris, and symbiotic bacteria, Rhizobium Phaseoli. Purified P. vulgaris lectins and six species of cultured Rhizobium were subjected to agglutination test. Lectins from bean and R. phaseoli showed relatively high agglutination activity indicating that host plant lectins recognize carbohydrate moieties on the compatible Rhizobium cell surface. The specific carbohydrate receptors for binding of the lectins on the cell surface of R. phaseoli were found as mannose and galactose. The minimum concentration of sugars for the inhibition was 6.25mM. The lectin content of cultured plant roots was measured after germination and was maximum in 5-day seedlings. The nodulation was competitively inhibited by lectins for the plants cultured with Rhizobium cells. By immunochemical studies, there was some relationship in antigenic determinants between R. phaseoli and R. japonicum but no relationships were observed with other Rhizobium species. The results suggest that the infection by rhizobia to the roots of leguminous plants may be caused by the specific interaction of lectins with rhizobia.

  • PDF

Reduced Graphene Oxide Field Effect Transistor for Detection of H+ Ions and Their Bio-sensing Application

  • Sohn, Il-Yung;Kim, Duck-Jin;Yoon, Ok-Ja;Tien, N.T.;Trung, T.Q.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.195-195
    • /
    • 2012
  • Recently, graphene based solution-gated field-effect transistors (SGFETs) have been received a great attention in biochemical sensing applications. Graphene and reduced graphene oxide (RGO) possess various advantages such as high sensitivity, low detection limit, label-free electrical detection, and ease of fabrication due to their 2D nature and large sensing area compared to 1D nanomaterials- based nanobiosensors. Therefore, graphene or RGO -based SGFET is a good potential candidate for sensitive detection of protons (H+ ions) which can be applied as the transducer in various enzymatic or cell-based biosensing applications. However, reports on detection of H+ ions using graphene or RGO based SGFETs have been still limited. According to recent reports, clean graphene grown by CVD or exfoliation is electrochemically insensitive to changes of H+ concentration in solution because its surface does not have terminal functional groups that can sense the chemical potential change induced by varying surface charges of H+ on CVD graphene surface. In this work, we used RGO -SGFETs having oxygen-containing functional groups such as hydroxyl (OH) groups that effectively interact with H+ ions for expectation of increasing pH sensitivity. Additionally, we also investigate RGO based SGFETs for bio-sensing applications. Hydroloytic enzymes were introduced for sensing of biomolecular interaction on the surface of RGO -SGFET in which enzyme and substrate are acetylcholinesterase (AchE) and acetylcholine (Ach), respectively. The increase in H+ generated through enzymatic reaction of hydrolysis of Ach by AchE immobilized on RGO channel in SGFET could be monitored by the change in the drain-source current (Ids).

  • PDF

Fas/FasL expression in the hippocampus of neonatal rat brains follwing hypoxic-ischemic injury (저산소성 허혈성 손상을 받은 신생 흰쥐 뇌 해마에서 Fas와 FasL 단백 발현)

  • Chang, Young Pyo;Kim, Myeung Ju;Lee, Young Il;Im, Ik Je;Cho, Jae Ju;Kim, Jong Wan;Yeo, Sung Moon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • Purpose : Fas is a cell surface receptor that transduces apoptotic death signals. Interaction of extracelluar domain of Fas with Fas ligand(FasL) triggers the apoptotic process in many diseases. We investigated the expression of Fas and FasL in the hippocampus of 7-day-old newborn rat brains following hypoxia-ischemia injury. Methods : The 7-days-old newborn rats were exposed to 8 percent oxygen for two hours after the ligation of right common carotid arteries. The newborn rats were killed and their brains were removed at 12, 14 and 48 hours after hypoxic-ischemic injury. The expressions of Fas and FasL of the right hippocampus were observed by western blotting and immunofluorescent staining. Results : Fas and FasL were strongly expressed in the right hippocampus ipsilateral to the ligation of the common carotid artery by western blotting at 12 hours following hypoxic-ischemic injury, and then slowly decreased. The immunofluorescent expressions of Fas and FasL strongly increased in the CA1 area of the right hippocampus at 12 and 24 hours following hypoxic-ischemic injury. The immunofluorescent expression of Fas decreased at 48 hours, but the expression of FasL persisted strongly at 48 hours following hypoxic-ischemic injury. Conclusion : The interaction of Fas with FasL on the cell surface may be involved in neuronal injury following hypoxic-ischemic injury in the developing brain.

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

Infectivity of Orientia tsutsugamushi to Various Eukaryotic Cells and Their Cellular Invasion Mechanism (Orientia tsutsugamushi의 유핵세포내 감염능 분석 및 기전)

  • Ihn, Kyung-Soo;Han, Seung-Hoon;Kim, Hang-Rae;Seong, Seung-Yong;Kim, Ik-Sang;Choi, Myung-Sik
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.5
    • /
    • pp.435-443
    • /
    • 1999
  • Orientia tsutsugamushi is obligate intracellular bacterium that grows within the cytoplasm of the eukaryotic host cells. Therefore capability of the attachment, entry into the host cell and intracellular survival should be critical process for oriential infection. In this study we investigated the cellular invasion mechanism of Orientia tsutsugamushi and the role of transmembrane heparan sulfate proteoglycan, which binds diverse components at the cellular microenvironment and is implicated as host cell receptors for a variety of microbial pathogens. First of all Orientia tsutsugamushi can invade a wide range of nonprofessional phagocytic cells including fibroblast, epithelial cells and endothelial cells of various host species, including Band T lymphocytes. Thus, it was postulated that the attachment of O. tsutsugamushi requires the recognition of ubiquitous surface structures of many kinds of host cells. Treatments with heparan sulfate and heparin inhibited the infection of Orientia tsutsugamushi in dose-dependent manner for L cell, mouse fibroblast, whereas other glycosaminoglycans such as chondroitin sulfate had no effect. Collectively, these findings provide strong evidence that initial interaction with heparan sulfate proteoglycan is required for the oriential invasion into host cells.

  • PDF

Pathogenesis and Host Interaction of Foot-and-mouth Disease (구제역의 병인론과 숙주와의 상호작용)

  • Park, Jong-Hyeon;Lee, Kwang-Nyeong;Kim, Su-Mi;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.113-121
    • /
    • 2011
  • Foot-and-mouth disease (FMD) is a severe vesicular disease of cloven-hoofed animals including domesticated ruminants and pigs. Acute clinical signs may be mild in sheep and goats but are associated with lameness in pigs and mouth lesions with vesicles in cattle. The required condition for a successful pathogen appears to be the ability to counteract both the host innate and adaptive immune response. FMD virus (FMDV) inhibits the induction of antiviral molecules and interferes with the secretory pathway in the infected cell. The surface expression of Major Histocompatibility Complex (MHC) class I molecules is reduced in infected cells. Thus, the ability of the host to recognize and eliminate virus infected cells is decreased. Furthermore, FMDV infection results in a rapid, but transient lymphopenia, reducing the number of T and B cells, and affecting T cell function. The virus appears to premature apoptosis-mediated cell death because it has a very short replication cycle and is able to rapidly produce large amounts of virus. FMDV engages the host protective response at multiple steps to ensure its effective replication and pathogenesis. This review describes the recent pathological and immunological studies to overcome the powerful abilities of FMDV to counteract defense mechanism of host.

Various Expression Pattern of Beta-catenin in the Preimplantation Stage of Porcine Embryos

  • Han, Jee-Soo;Koo, Deog-Bon;Shin, Bo-Rami;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.56-56
    • /
    • 2003
  • Beta-catenin is very important in early development including involvement in cell adhesion, cell signaling, and developmental fate specification. Cell-cell interaction is an important process during mammalian embryonic development. In preimplantation embryos, embryonic compaction is the process of increased cellular flattening and adhesion of junctional complexes and results in a polarized distribution. Beta-catenin is associated with embryonic compaction in mammals. Here, we examined the relationship between beta-catenin expression and compaction in porcine embryos derived from in vitro fertilization. First of all, we investigated beta-catenin expression in each embryonic developmental stage and also focused on expression pattern according to full, partial and non-compaction at morula stage. We used the immunocyto-chemical method in this research. To confirm compaction affects on the embryonic development, we compared between compaction and developmental rates to the blastocyst. The result showed that compaction and non-compaction rates were 14.6% and 63.8% at 4 days after IVF, respectively The developmental rates to the blastocyst and their total cell number were 50.9% vs 36.4% and 41.4$\pm$11.5 vs 26.8$\pm$12.7 in compaction and non-compaction groups. Although no difference was detected in the ratio of ICM to total cells between two groups, total cell number of the blastocysts in compaction group was superior to that of the blastocysts in non-compaction group (P<0.05). Expression of beta-catenin appeared in the boundary of membrane surface between blastomeres in 2- and 4-cell stage, and observed irregular pattern from 8-cell to blastocyst stage. We also investigated beta-catenin expression pattern according to the degree of compaction in the 3 groups; full, partial (>50%) and non-compaction. The expression signal in fully compacted embryos was stronger than those of partial and non-compacted embryos. Especially, beta-catenin expression appeared various patterns in morula stage suggesting the aberrant distribution of beta-catenin is affected by compaction patterns. Our results suggest that abnormal beta-catenin expression was affected by embryo quality and further development in porcine embryos in vitro.

  • PDF

A Study on Characteristics of HI Decomposition Using Pt Catalysts on ZrO2-SiO2 Mixed Oxide (ZrO2-SiO2 복합산화물에 담지된 백금 촉매의 요오드화수소 분해 특성 연구)

  • Ko, Yunki;Park, Eunjung;Bae, Kikwang;Park, Chusik;Kang, Kyoungsoo;Cho, Wonchul;Jeong, Seonguk;Kim, Changhee;Kim, Young Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • This work is investigated for the catalytic decomposition of hydrogen iodide (HI). Platinum was used as active material by loading on $ZrO_2-SiO_2$ mixed oxide in HI decomposition reaction. To obtain high and stable conversion of hydrogen iodide in severe condition, it was required to improve catalytic activity. For this reason, a method increasing dispersion of platinum was proposed in this study. In order to get high dispersion of platinum, zirconia was incorporated in silica by sol-gel synthesis. Incorporating zirconia influence increasing platinum dispersion and BET surface area as well as decreasing deactivation of catalysts. It should be able to stably product hydrogen for a long time because of inhibitive deactivation. HI decomposition reaction was carried out under the condition of $450^{\circ}C$ and 1 atm in a fixed bed reactor. Catalysts analysis methods such as $N_2$ adsorption/desorption analysis, X-ray diffraction, X-ray fluorescence, ICP-AES and CO gas chemisorption were used to measurement of their physico-chemical properties.