Microcontact Printing of Bacteria Using Hybrid Agarose Gel Stamp

혼성 아가로즈젤 스탬프를 이용한 박테리아 마이크로 컨택트 프린팅

  • Shim, Hyun-Woo (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Lee, Ji-Hye (Department of Chemical and Biological Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical and Biological Engineering, Chungnam National University)
  • 심현우 (충남대학교 공과대학 바이오응용화학부 생명화학공학과) ;
  • 이지혜 (충남대학교 공과대학 바이오응용화학부 생명화학공학과) ;
  • 이창수 (충남대학교 공과대학 바이오응용화학부 생명화학공학과)
  • Published : 2006.08.30

Abstract

The noble method of hybrid agarose gel microstamp fabricated by replica molding against PDMS master to make bacteria patterns on agar surface was presented. After the fabricated hybrid agarose gel microstamp was inked with E. coli, we could obtain 2 dimensional bacterial arrays with $50{\mu}m$ circular spots. And the various shaped patterns based on experimental design were easily generated. The analysis of mean fluorescent signal was showed that bacterial pattern have high contrast between spots and background and homogeneity of pattern. Our proposed method solved the problem of wetting and handling with small soft agarose gel microstamp when bacteria were used for ink. The agarose gel stamp provides appropriate environment to inked bacteria, which is essential technology for cell patterning with high retaining viability during the patterning process. This method is reproducible, convenient, rapid, and could be applied to screening system, study of cell-surface interaction, and microbial ecology.

박테리아 패터닝을 위한 혼성 아가로즈젤 마이크로 스탬프는 PDMS 몰드를 이용한 replica moding 공정을 이용하여 제작하였다. 완성된 스탬프를 박테리아를 잉크로 사용한 후, $50{\mu}m$ 원 모양을 가지는 2차원 박테리아 어레이를 구현할 수 있었다. 또한, 상기 방법을 통하여 실험 목적에 적합한 다양한 모양을 가지는 패턴을 쉽게 만들 수 있다. 패터닝된 박테리아의 형광 세기는 스팟과 주변간에 매우 높은 대조비를 이루며, 각각의 스팟 및 스팟간의 형광 세기가 매우 균일함을 보여 프린팅 시 매우 균일한 패턴을 얻을 수 있었다. 박테리아 패터닝을 할 경우 큰 문제점인 낮은 젖음성과 미끄럽고 작은 아가로즈젤 마이크로 스탬프를 취급의 어려움을 본 연구에서 제안한 혼성 아가로즈젤 마이크로 스탬프를 이용하여 해결할 수 있었다. 상기 방법의 가장 큰 장점은 세포를 이용한 패터닝의 경우 세포의 활성을 유지시키는 것인데 다량의 수분을 포함하는 아가로즈젤을 사용할 경우 세포의 활성을 유지시키면서 패턴을 구현할 수 있으므로 매우 중요한 기술로 생각된다. 본 연구에서 제안된 방법은 매우 재현성이 높으며, 편리하고, 빠르게 구현할 수 있어서 미생물 생태학, 세포와 표면간의 상호작용 그리고 세포를 바탕으로 하는 스크리닝 시스템에 활용 되어 질것으로 기대된다.

Keywords

References

  1. Kane, R. S., S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides (1999), Patterning proteins and cells using soft lithography, Biomaterials 20, 2363-2376 https://doi.org/10.1016/S0142-9612(99)00165-9
  2. Quist, A. P., E. Pavlovic, and S. Oscarsson (2005), Recent advances in microcontact printing, Analytical and Bioanalytical Chemistry 381, 591-600 https://doi.org/10.1007/s00216-004-2847-z
  3. Kim, H. S., Y. M. Bae, Y. K. Kim, B. K. Oh, and J. W. Choi (2006), Antibody layer fabrication for protein chip to detect E. coli O157 : H7, using microcontact printing technique, Journal of Microbiology and Biotechnology 16, 141-144 https://doi.org/10.1159/000094024
  4. Park, J. P., K. B. Lee, S. J. Lee, T. J. Park, M. G. Kim, B. H. Chung, Z. W. Lee, I. S. Choi, and S. Y. Lee (2005), Micropatterning proteins on polyhydroxyalkanoate substrates by using the substrate binding domain as a fusion partner, Biotechnology and Bioengineering 92, 160-165 https://doi.org/10.1002/bit.20581
  5. Park, J. P., S. J. Lee, T. J. Park, K. B. Lee, I. S. Choi, S. Y. Lee, M. G. Kim, and B. H. Chung (2004), Microcontact printing of biotin for selective immobilization of streptavidin-fused proteins and SPR analysis, Biotechnology and Bioprocess Engineering 9, 137-142 https://doi.org/10.1007/BF02932997
  6. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1998), Micropatterned surfaces for control of cell shape, position, and function, Biotechnol. Prog. 14, 356-63 https://doi.org/10.1021/bp980031m
  7. Park, T. H. and M. L. Shuler (2003), Integration of cell culture and microfabrication technology, Biotechnol. Prog. 19, 243-53 https://doi.org/10.1021/bp020143k
  8. Thibault, C., V. Le Berre, S. Casimirius, E. Trevisiol, J. Francois, and C. Vieu (2005), Direct microcontact printing of oligonucleotides for biochip applications, J. Nanobiotechnology 3, 7 https://doi.org/10.1186/1477-3155-3-7
  9. Lange, S. A., V. Benes, D. P. Kern, J. K. Horber, and A. Bernard (2004), Microcontact printing of DNA molecules, Anal. Chem. 76, 1641-7 https://doi.org/10.1021/ac035127w
  10. Levskaya, A., A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, E. A. Davidson, A. Scouras, A. D. Ellington, E. M. Marcotte, and C. A. Voigt (2005), Synthetic biology: engineering Escherichia coli to see light, Nature 438, 441-2 https://doi.org/10.1038/nature04405
  11. Hall-Stoodley, L., J. W. Costerton, and P. Stoodley (2004), Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol. 2, 95-108 https://doi.org/10.1038/nrmicro821
  12. Davey, M. E. and A. O'Toole G. (2000), Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev. 64, 847-67 https://doi.org/10.1128/MMBR.64.4.847-867.2000
  13. Lederberg, J. (1989), Replica plating and indirect selection of bacterial mutants: isolation of preadaptive mutants in bacteria by sib selection, Genetics 121, 395-9
  14. Duetz, W. A., L. Ruedi, R. Hermann, K. O'Connor, J. Buchs, and B. Witholt (2000), Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates, Appl. Environ. Microbiol. 66, 2641-6 https://doi.org/10.1128/AEM.66.6.2641-2646.2000
  15. Minas, W., J. E. Bailey, and W. Duetz (2000), Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format, Antonie Van Leeuwenhoek 78, 297-305 https://doi.org/10.1023/A:1010254013352
  16. Singhvi, R., A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides, and D. E. Ingber (1994), Engineering cell shape and function, Science 264, 696-8 https://doi.org/10.1126/science.8171320
  17. Trimbach, D. C., M. Al-Hussein, W. H. de Jeu, M. Decre, D. J. Broer, and C. W. Bastiaansen (2004), Hydrophilic elastomers for microcontact printing of polar inks, Langmuir 20, 4738-42 https://doi.org/10.1021/la049716o
  18. Wang, B., J. Feng, and C. Gao (2005), Printing biomacromolecules on a bovine serum albumin precursor layer, Macromol. Biosci. 5, 767-74 https://doi.org/10.1002/mabi.200500037
  19. Ye, H., Z. Gu, and D. H. Gracias (2006), Kinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy, Langmuir 22, 1863-8 https://doi.org/10.1021/la052030r
  20. Hui, A. Y., G. Wang, B. Lin, and W. T. Chan (2005), Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices, Lab. Chip. 5, 1173-7 https://doi.org/10.1039/b504271b
  21. Kim, J., M. K. Chaudhury, and M. J. Owen (1999), Hydrophobicity loss and recovery of silicone HV insulation, Ieee Transactions on Dielectrics and Electrical Insulation 6, 695-702 https://doi.org/10.1109/94.798126
  22. Balmer, T. E., H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf (2005), Diffusion of alkanethiols in PDMS and its implications on microcontact printing (mu CP), Langmuir 21, 622-632 https://doi.org/10.1021/la048273l
  23. Yu, K., Y. Cong, J. Fu, R. B. Xing, N. Zhao, and Y. C. Han (2004), Patterned self-adaptive polymer brushes by 'grafting to' approach and microcontact printing, Surface Science 572, 490-496 https://doi.org/10.1016/j.susc.2004.09.037
  24. Makamba, H., Y. Y. Hsieh, W. C. Sung, and S. H. Chen (2005), Stable permanently hydrophilic protein-resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking, Anal. Chem. 77, 3971-8 https://doi.org/10.1021/ac0502706
  25. Hillborg, H., N. Tomczak, A. Olah, H. Schonherr, and G. J. Vancso (2004), Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane), Langmuir 20, 785-94 https://doi.org/10.1021/la035552k