• Title/Summary/Keyword: Cell-based therapy

Search Result 437, Processing Time 0.028 seconds

Current trends of stem cell-mediated gene therapy (줄기 세포 분야의 유전자 치료 연구 동향)

  • Oh, Yu-Kyoung;Chung, Hyung-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Recently, stem cell-mediated gene therapy is emerging as a novel therapeutic approach. For the successful gene modification of stem cells, the development of a suitable gene transfer technique needs to be preceded. This review focuses on the various gene transfer techniques based on nonviral and viral vectors, and physical methods. The advantages and disadvantages of each gene transfer method are compared, and the general properties of these vectors are discussed in relation to the gene transfer in stem cell research. This review also highlights the therapeutic application of stem cell-mediated gene therapy. The choice of gene transfer vectors may vary depending on the type of the stem cells and the target of stem cell therapy. Of various gene transfer methods, viral vector-based gene therapy has been emphasized due to the higher transfection efficiency. The current status and up-to-date findings of stem cell-mediated gene therapy are discussed in the viewpoint of the various targets of stem cell therapy such as the modification of stem cell potency, the acceleration of regeneration process and the formation of expressional organization.

Human Pluripotent Stem Cell-Derived Retinal Organoids: A Viable Platform for Investigating the Efficacy of Adeno-Associated Virus Gene Therapy

  • Hyeon-Jin Na;Jae-Eun Kwon;Seung-Hyun Kim;Jiwon Ahn;Ok-Seon Kwon;Kyung-Sook Chung
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2024
  • With recent advances in adeno-associated virus (AAV)-based gene therapy, efficacy and toxicity screening have become essential for developing gene therapeutic drugs for retinal diseases. Retinal organoids from human pluripotent stem cells (hPSCs) offer a more accessible and reproducible human test platform for evaluating AAV-based gene therapy. In this study, hPSCs were differentiated into retinal organoids composed of various types of retinal cells. The transduction efficiencies of AAV2 and AAV8, which are widely used in clinical trials of inherited retinal diseases, were analyzed using retinal organoids. These results suggest that retinal organoids derived from hPSCs serve as suitable screening platforms owing to their diverse retinal cell types and similarity to the human retina. In summary, we propose an optimal stepwise protocol that includes the generation of retinal organoids and analysis of AAV transduction efficacy, providing a comprehensive approach for evaluating AAV-based gene therapy for retinal diseases.

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Clinical utilization of cord blood over human health: experience of stem cell transplantation and cell therapy using cord blood in Korea

  • Lee, Young-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.3
    • /
    • pp.110-116
    • /
    • 2014
  • Cord blood (CB) has been used as an important and ethical source for hematopoietic stem cell transplantation (SCT) as well as cell therapy by manufacturing mesenchymal stem cell, induced pleuripotential stem cell or just isolating mononuclear cell from CB. Recently, the application of cell-based therapy using CB has expanded its clinical utility, particularly, by using autologous CB in children with refractory diseases. For these purposes, CB has been stored worldwide since mid-1990. In this review, I would like to briefly present the historical development of clinical uses of CB in the fields of SCT and cell therapy, particularly to review the experiences in Korea. Furthermore, I would touch the recent banking status of CB.

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity

  • Sung-Ho Chang;Chung Gyu Park
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.44.1-44.16
    • /
    • 2023
  • Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.

Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

  • Ji Sung Kim;Yong Guk Kim;Eun Jae Park;Boyeong Kim;Hong Kyung Lee;Jin Tae Hong;Youngsoo Kim;Sang-Bae Han
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.99-108
    • /
    • 2016
  • Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.

Molecular Nuclear Cardiac Imaging (심장핵의학 분자영상학)

  • Lee, Dong-Soo;Paeng, Jin-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needic injection with or without catheter guidance. Tk expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

Comparison of Radiological Tumor Response Based on iRECIST and RECIST 1.1 in Metastatic Clear-Cell Renal Cell Carcinoma Patients Treated with Programmed Cell Death-1 Inhibitor Therapy

  • Bingjie Zheng;Ji Hoon Shin;Hailiang Li;Yanqiong Chen;Yuan Guo;Meiyun Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.366-375
    • /
    • 2021
  • Objective: To evaluate the radiological tumor response patterns and compare the response assessments based on immune-based therapeutics Response Evaluation Criteria in Solid Tumors (iRECIST) and RECIST 1.1 in metastatic clear-cell renal cell carcinoma (mccRCC) patients treated with programmed cell death-1 (PD-1) inhibitors. Materials and Methods: All mccRCC patients treated with PD-1 inhibitors at Henan Cancer Hospital, China, between January 2018 and April 2019, were retrospectively studied. A total of 30 mccRCC patients (20 males and 10 females; mean age, 55.6 years; age range, 37-79 years) were analyzed. The target lesions were quantified on consecutive CT scans during therapy using iRECIST and RECIST 1.1. The tumor growth rate was calculated before and after therapy initiation. The response patterns were analyzed, and the differences in tumor response assessments of the two criteria were compared. The intra- and inter-observer variabilities of iRECIST and RECIST 1.1 were also analyzed. Results: The objective response rate throughout therapy was 50% (95% confidence interval [CI]: 32.1-67.9) based on iRECIST and 30% (95% CI: 13.6-46.4) based on RECIST 1.1. The time-to-progression (TTP) based on iRECIST was longer than that based on RECIST 1.1 (median TTP: not reached vs. 170 days, p = 0.04). iRECIST and RECIST 1.1 were discordant in 8 cases, which were evaluated as immune-unconfirmed PD based on iRECIST and PD based on RECIST 1.1. Six patients (20%, 6/30) had pseudoprogression based on iRECIST, of which four demonstrated early pseudoprogression and two had delayed pseudoprogression. Significant differences in the tumor response assessments based on the two criteria were observed (p < 0.001). No patients demonstrated hyperprogression during the study period. Conclusion: Our study confirmed that the iRECIST criteria are more capable of capturing immune-related atypical responses during immunotherapy, whereas conventional RECIST 1.1 may underestimate the benefit of PD-1 inhibitors. Pseudoprogression is not rare in mccRCC patients during PD-1 inhibitor therapy, and it may last for more than the recommended maximum of 8 weeks, indicating a limitation of the current strategy for immune response monitoring.

Liposome-Mediated Cancer Gene Therapy: Clinical Trials and their Lessons to Stem Cell Therapy

  • Lee, Jung-Hoon;Lee, Min-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.433-442
    • /
    • 2012
  • The promise of stem cell therapy for various clinical applications seems getting realistic. An increasing number of researchers, from virtually every discipline of natural sciences, are flocking into this new world. Only ten years ago, gene therapy was the medicine for the 21st century. The possibility was endless. Although the science itself underlying gene therapy was very young, the field was exploding under the optimism that this new medicine would revolutionize both the basic and clinical sciences. For many reasons, the initial target was cancer. Here, we will focus on the results of cancer gene therapy clinical trials using liposome or nonviral gene carrier, hoping that the lesson from here will be a guideline for the new generation of cell-based therapies.