• 제목/요약/키워드: Cell transplantation

검색결과 654건 처리시간 0.029초

Hematopoietic stem cell transplantation in children with acute leukemia: similar outcomes in recipients of umbilical cord blood versus marrow or peripheral blood stem cells from related or unrelated donors

  • Yi, Eun-Sang;Lee, Soo-Hyun;Son, Meong-Hi;Kim, Ju-Youn;Cho, Eun-Joo;Lim, Su-Jin;Cheuh, Hee-Won;Yoo, Keon-Hee;Sung, Ki-Woong;Koo, Hong-Hoe
    • Clinical and Experimental Pediatrics
    • /
    • 제55권3호
    • /
    • pp.93-99
    • /
    • 2012
  • Purpose: This study compared outcomes in children with acute leukemia who underwent transplantations with umbilical cord blood (UCB), bone marrow, or peripheral blood stem cells from a human leukocyte antigen (HLA)-matched related donor (MRD) or an unrelated donor (URD). Methods: This retrospective study included consecutive acute leukemia patients who underwent their first allogeneic hematopoietic stem cell transplantation (HSCT) at Samsung Medical Center between 2005 and 2010. Patients received stem cells from MRD (n=33), URD (n=46), or UCB (n=41). Results: Neutrophil and platelet recovery were significantly longer after HSCT with UCB than with MRD or URD ($p$ <0.01 for both). In multivariate analysis using the MRD group as a reference, the URD group had a significantly higher risk of grade III to IV acute graft-versus-host disease (GVHD; relative risk [RR], 15.2; 95% confidence interval [CI], 1.2 to 186.2; $p$=0.03) and extensive chronic GVHD (RR, 6.9; 95% CI, 1.9 to 25.2; $p$ <0.01). For all 3 donor types, 5-year event-free survival (EFS) and overall survival were similar. Extensive chronic GVHD was associated with fewer relapses (RR, 0.1; 95% CI, 0.04 to 0.6; $p$ <0.01). Multivariate analysis showed that lower EFS was associated with advanced disease at transplantation (RR, 3.2; 95% CI, 1.3 to 7.8; $p$ <0.01) and total body irradiation (RR, 2.1; 95% CI, 1.0 to 4.3; $p$=0.04). Conclusion: Survival after UCB transplantation was similar to survival after MRD and URD transplantation. For patients lacking an HLA matched donor, the use of UCB is a suitable alternative.

In vivo Tracking of Transplanted Bone Marrow-Derived Mesenchymal Stem Cells in a Murine Model of Stroke by Bioluminescence Imaging

  • Jang, Kyung-Sool;Lee, Kwan-Sung;Yang, Seung-Ho;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권5호
    • /
    • pp.391-398
    • /
    • 2010
  • Objective : This study was designed to validate the cell trafficking efficiency of the in vivo bioluminescence image (BLI) study in the setting of transplantation of the luciferase expressing bone marrow-derived mesenchymal stem cells (BMSC), which were delivered at each different time after transient middle cerebral artery occlusion (MCAO) in a mouse model. Methods : Transplanting donor BMSC were prepared by primary cell culture from transgenic mouse expressing luciferase (LUC). Transient focal infarcts were induced in 4-6-week-old male nude mice. The experiment mice were divided into five groups by the time of MSC transplantation : 1) sham-operation group, 2) 2-h group, 3) 1-day group, 4) 3-day group, and 5) 1-week group. BLI for detection of spatial distribution of transplanted MSC was performed by detecting emitted photons. Migration of the transplanted cells to the infarcted area was confirmed by histological examinations. Differences between groups were evaluated by paired t-test. Results : A focal spot of bioluminescence was observed at the injection site on the next day after transplantation by Signal intensity of bioluminescence. After 4 weeks, the mean signal intensities of 2-h, 1-day, 3-day, and 1-week group were $2.6{\times}10^7{\pm}7.4{\times}10^6$. $6.1{\times}10^6{\pm}1.2{\times}10^6$, $1.7{\times}10^6{\pm}4.4{\times}10^5$, and $8.9{\times}10^6{\pm}9.5{\times}10^5$, respectively. The 2-h group showed significantly higher signal intensity (p<0.01). The engrafted BMSC showed around the infarct border zones on immunohistochemical examination. The counts of LUC-positive cells revealed the highest number in the 2-h group, in agreement with the results of BLI experiments (p<0.01). Conclusion : In this study, the results suggested that the transplanted BMSC migrated to the infarct border zone in BLI study and the higher signal intensity of LUC-positive cells seen in 2 hrs after MSC transplantation in MCAO mouse model. In addition, noninvasive imaging in real time is an ideal method for tracking stem cell transplantation. This method can be widely applied to various research fields of cell transplantation therapy.

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.

Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

  • Choi, Moonhwan;Ban, Taehyun;Rhim, Taiyoun
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs.

Enhancement of In Vivo Bone Regeneration Efficacy of Human Mesenchymal Stem Cells

  • Kang, Sun-Woong;Lee, Jae-Sun;Park, Min Sun;Park, Jung-Ho;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.975-982
    • /
    • 2008
  • We investigated whether transplantation of osteogenically differentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and the use of an hydroxyapatite (HAp) scaffold can enhance the in vivo bone formation efficacy of human BMMSCs. Three months after implantation to the subcutaneous dorsum of athymic mice, transplantation of osteogenically differentiated human BMMSCs increased the bone formation area and calcium deposition to 7.1- and 6.2-folds, respectively, of those of transplantation of undifferentiated BMMSCs. The use of the HAp scaffold increased the bone formation area and calcium deposition to 3.7- and 3.5-folds, respectively, of those of a polymer scaffold. Moreover, a combination of transplantation of osteogenically differentiated BMMSCs and HAp scaffold further increased the bone formation area and calcium deposition to 10.6- and 9.3-folds, respectively, of those of transplantation of undifferentiated BMMSCs seeded onto polymer scaffolds. The factorial experimental analysis showed that osteogenic differentiation of BMMSCs prior to transplantation has a stronger positive effect than the HAp scaffold on in vivo bone formation.

배양한 근육세포를 확장성 심근증을 가진 햄스터 심장에 이식 후 심장기능의 변화연구 (The Effects of Muscle Cell Transplantation into the Hearts of the Hamsters with a Dilated Cardiomyopathy)

  • 유경종;임상현;송석원;홍유선;박현영
    • Journal of Chest Surgery
    • /
    • 제35권5호
    • /
    • pp.336-342
    • /
    • 2002
  • 배경: 최근 들어 심부전증을 가진 심장에 세포이식을 이용하여 심장기능을 개선시키고자 하는 연구가 활발히 진행되고 있다. 이 연구는 확장성 심근증을 가진 햄스터 심장에 배양한 평활근 세포와 심근세포를 이식한 후 심장기능의 변화를 관찰하였다. 대상 및 방법: 심근세포와 평활근세포는 BIO 53.58 햄스터의 심장과 옃션 deferens에서 분리하여 배양하였다. 실험군은 각각 10마리로서 심근세포 (1군)와 평활근세포 (2군) 및 배양액 (3군)을 17주된 BIO 53.58 햄스터의 좌심실에 이식하였고 Cyclosporine (5mg/Kg)을 1군에 한하여 수술 직후부터 매일 피하주사하였다. sham군 (4군) 은 세포나 배양액의 이식 없이 단순 흉부수술만을 시행하였다. 세포나 배양액의 이식 4주 후에 Langendorff 체외순환 모델을 이용하여 좌심실기능을 측정하였다. 결과: 조직학적 검사상 모든 군에서 심한 심근괴사가 있었고, 1군과 2군에서는 수여심장의 심근 내에서 새로운 근육조직이 형성되었다. 좌심실기능의 평가에서 1군과 2군은 3군과 4군에 비해 통계적으로 유의하게 우수하였고 (p<0.01), 2군은 1군에 비해 수축기 좌심실압과 발생기압이 통계적으로 유의하게 우수하였다 (p<0.05). 그러나 3군과 4군 사이에는 통계적인 유의성이 없었다. 절론 확장성 심근증을 가진 햄스터 심장에 배양한 평활근 세포와 심근세포를 이식한 결과 수여심장의 심근 내에서 근육조직을 형성하고 좌심실기능을 개선시켰으며, 이 중 평활근세포를 이식한 심장이 수축기 좌심실압과 발생기압이 더 우수한 좌심실기능 개선효과를 보여주었다.

siRNA-mediated Silencing of Notch-1 Enhances Docetaxel Induced Mitotic Arrest and Apoptosis in PCa Cells

  • Ye, Qi-Fa;Zhang, Yi-Chuan;Peng, Xiao-Qing;Long, Zhi;Ming, Ying-Zi;He, Le-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2485-2489
    • /
    • 2012
  • Purpose: Notch is an important signaling pathway that regulates cell fate, stem cell maintenance and the initiation of differentiation in many tissues. It has been reported that activation of Notch-1 contributes to tumorigenesis. However, whether Notch signaling might have a role in chemoresistance of prostate cancer is unclear. This study aimed to investigate the effects of Notch-1 silencing on the sensitivity of prostate cancer cells to docetaxel treatment. Methods: siRNA against Notch-1 was transfected into PC-3 prostate cancer cells. Proliferation, apoptosis and cell cycle distribution were examined in the presence or absence of docetaxel by MTT and flow cytometry. Expression of $p21^{waf1/cip1}$ and Akt as well as activation of Akt in PC-3 cells were detected by Western blot and Real-time PCR. Results: Silencing of Notch-1 promoted docetaxel induced cell growth inhibition, apoptosis and cell cycle arrest in PC-3 cells. In addition, these effects were associated with increased $p21^{waf1/cip1}$ expression and decreased Akt expression and activation in PC-3 cells. Conclusion: Notch-1 promotes chemoresistance of prostate cancer and could be a potential therapeutic target.

Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma

  • Ding, Jun;Xu, Kangdi;Zhang, Jie;Lin, Bingyi;Wang, Yubo;Yin, Shengyong;Xie, Haiyang;Zhou, Lin;Zheng, Shusen
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.630-635
    • /
    • 2018
  • C-X-C motif chemokine ligand 2 (CXCL2) is a small secreted protein that exhibits a structure similar to the proangiogenic subgroup of the CXC chemokine family. Recently, accumulating evidence suggests that chemokines play a pivotal role in cancer progression and carcinogenesis. We examined the expression levels of 7 types of $ELR^+$ CXCLs messenger RNA (mRNA) in 264 clinical samples. We found that CXCL2 expression was stably down-regulated in 94% of hepatocellular carcinoma (HCC) specimens compared with paired adjacent normal liver tissues and some HCC cell lines. Moreover, CXCL2 overexpression profoundly attenuated HCC cell proliferation and growth and induced apoptosis in vitro. In animal studies, we found that overexpressing CXCL2 by lentivirus also apparently inhibited the size and weight of subcutaneous tumours in nude mice. Furthermore, we demonstrated that CXCL2 induced HCC cell apoptosis via both nuclear and mitochondrial apoptosis pathways. Our results indicate that CXCL2 negatively regulates the cell cycle in HCC cells via the ERK1/2 signalling pathway. These results provide new insights into HCC and may ultimately lead to the discovery of innovative therapeutic approaches of HCC.

Xenotransplantation of Pig Spermatogonia into Mouse Testis

  • 이미숙;최윤정;권득남;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.82-82
    • /
    • 2003
  • The objective of the present study was to investigate the survival effect after transplantation of pig spermatogonia cells into mouse testis. Donor cells were collected from porcine testis and the isolated spermatogonial stem cells were labeled with a fluorescent marker before transplantation and transplanted into testes of busulfan-treated recipient mice. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Transplanted germ cells were present in the seminiferous epithelium at 4 weeks after the transplantation, but any differentiating porcine-derived cells were not detected in mouse testis. These results indicate that porcine-derived spermatogonial stem cells can be survived in the recipient, but suggest that porcine-derived male stem cells can not proceed to further differentiating step without helping of immunosuppressor agents.

  • PDF

The Cell Survival and Differentiation after Transplantation, Which Harvest from Adult Rat Brain by High-speed Centrifugation Method

  • Kim, Jong-Tae;Yoo, Do-Sung;Woo, Ji-Hyun;Huh, Pil-Woo;Cho, Kyung-Sock;Kim, Dal-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권2호
    • /
    • pp.121-125
    • /
    • 2005
  • Objective : Many recent reports have shown that the mature mammalian brain harbors multipotent stem cells, rendering the brain capable of generating new neurons and glia throughout life. Harvested stem cells from an adult rat are transplanted in order to evaluate the cell survival and differentiation. Methods : Using a percoll gradient with a high speed centrifugation method, we isolate neural stem/progenitor cells were isolated from the subventricular zone[SVZ] of a syngeneic adult Fisher 344 rats brain. For 14days expansion, the cultured cells comprised of a heterogeneous population with the majority of cells expressing nestin and/or GFAP. After expanding the SVZ cells in the presence of basic fibroblast growth factor-2, and transplanting then into the hippocampus of normal rats, the survival and differentiation of those cells were examined. For transplantation, the cultured cells were labeled with BrdU two days prior to use. In order to test their survival, the cells were transplanted into the dorsal hippocampus of normal adult Fisher 344 rats. Results : The preliminary data showed that at 7days after transplantation, BrdU+ transplanted cells were observed around the injection deposition sites. Immuno-fluorescent microscopy revealed that the cells co-expressed BrdU+ and neuronal marker ${\beta}$-tubulin III. Conclusion : The data demonstrate that the in vitro expanded SVZ cells can survive in a heterotypic environment and develop a neuronal phenotype in the neurogenic region. However more research will be needed to examine the longer survival time points and quantifying the differentiation in the transplanted cells in an injured brain environment.