• Title/Summary/Keyword: Cell signal

Search Result 2,183, Processing Time 0.023 seconds

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

RNA polymerase I subunit D activated by Yin Yang 1 transcription promote cell proliferation and angiogenesis of colorectal cancer cells

  • Jianfeng Shan;Yuanxiao Liang;Zhili Yang;Wenshan Chen;Yun Chen;Ke Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT-29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

A study on Generalized Synchronization in the State-Controlled Cellular Neural Network(SC-CNN)

  • Rae Youngchul;Kim Yi-gon;Tinduka Mathias
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.291-296
    • /
    • 2005
  • In this paper, we introduce a generalized synchronization method and secure communication in the State-Controlled Cellular Neural Network (SC-CNN). We make a SC-CNN using the n-double scroll. A SC-CNN is created by applying identical n-double scroll or non-identical n-double scroll and Chua's oscillator with weak coupled method to each cell. SC-CNN synchronization was achieved using GS(Generalized Synchronization) method between the transmitter and receiver about each state variable in the SC-CNN. In order to secure communication, we have synthesizing the desired information with a SC-CNN circuit by adding the information signal to the hyper-chaos signal using the SC-CNN in the transmitter. And then, transmitting the synthesized signal to the ideal channel, we confirm secure communication by separating the information signal and the SC-CNN signal in the receiver.

복잡계 비밀 통신

  • Bae, Young-Chul;Kim, Chun-Suk;Kim, Ju-Wan;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.289-293
    • /
    • 2005
  • this paper, we introduce a secure communication method using complex system. We make a complex system with the n-double scroll or Chua's oscillator. The Complex system is created by applying identical n0double scroll or non-identical n-double scroll and Chua's oscillator with weak soupled method to each cell. In order to secure communication, we have synthesizing the desired information with a complex system circuit by adding the information signal to the hyper-chaos signal. And then, transmitting the synthesized signal to the ideal channel, we confirm secure communication by separating the information signal and the complex system signal in the receiver.

  • PDF

A Study on the Enhancement of Detection Performance of Space Situational Awareness Radar System

  • Choi, Eun-Jung;Lee, Jonghyun;Cho, Sungki;Moon, Hyun-Wook;Yum, Jea-Myong;Yu, Jiwoong;Park, Jang-Hyun;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • Radar sensors are used for space situational awareness (SSA) to determine collision risk and detect re-entry of space objects. The capability of SSA radar system includes radar sensitivity such as the detectable radar cross-section as a function of range and tracking capability to indicate tracking time and measurement errors. The time duration of the target staying in a range cell is short; therefore, the signal-to-noise ratio cannot be improved through the pulse integration method used in pulse-Doppler signal processing. In this study, a method of improving the signal-to-noise ratio during range migration is presented. The improved detection performance from signal processing gains realized in this study can be used as a basis for comprehensively designing an SSA radar system.

WEHI-231 cells are defective in the ligand-induced internalization of B cell antigen receptor

  • Yoon, Sang Soon;Kim, Tae Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2001
  • Backgorund: WEHI-231 B cell line is a representative model for $IgM^+$ mature B cells. To understand the signaling differences between mature and immature B cells, we compared the responsiveness of WEHI-231 and Bal 17 B cell lines to BCR cross-linking. Methods: The extents of tyrosine phosphorylation, ligand-induced internalization, and activation-induced cell death upon BCR cross-linking were compared in two cell lines. Results: Despite a higher expression of BCR, cross-linking of BCR on WEHI-231 cell evoked a weaker level of tyrosine phosphorylation and BCR endocytosis than Bal 17 cells. Furthermore, the endocytosed BCR could not enter the lysosomal compartment and stayed as peripheral spots in WEHI-231 cells. Conclusion: WEHI-231 cell showed preferred BCR-mediated signaling pathways leading to a reduced capability of antigen presentation as well as the enhanced apoptosis in comparision with Bal 17 cells. These results might reflect the signaling differences between mature and immature B cells.

  • PDF

Differentiative potential of embryonic stem (ES) cells in vitro; formation of embryoid body and its practical application (배아기간세포 (ES cell)의 체외에서의 분화능;embryoid body형성과 실제 적용)

  • 박종임
    • Journal of Embryo Transfer
    • /
    • v.14 no.1
    • /
    • pp.6-15
    • /
    • 1999
  • ES cell의 수립으로 특히 mouse를 중심으로 한 발생학, 유전학 연구의 획기적 발전과 형질변환 동물의 생산 및 동물 체내에서 유전자 기능의 탐구에 매우 큰 변혁을 가져오게 되었다. 또한 ES cell과 embryoid body는 체외 분화능의 연구에 있어 새로운 cytokine의 발견 및 세포 수준에서의 유전자 기능 해석의 강력한 연구수단으로서 폭 넓게 이용되어 질 수 있는 가능성을 시사하고 있다. 이는 ES cell line이 지닌 두 가지 장점, 즉, 유전자 조작의 용이함과, 거의 모든 종류의 성체 구성세포로 분화할 수 있는 성질 때문이다. 이러한 ES cell technology를 실제로 제반 학문과 특히, 인간에게 적용하기 위해서는 반드시 해결해야 할 중요한 문제점이 있다. 첫째로, ES cell을 대상으로 하는 형질변환 방법의 편의성 및 효율개선이 이루어 wu야 하며, 두 번째로 인간의 유전자 및 세포 이식 치료 등을 비롯한 제반 연구에 직접 적용 가능한 ES cell line의 수립과 체외에서 목적으로 하는 분화 세포를 얻기 위한 배양조건이 확립되어져야 한다. 이러한 목표를 달성하기 위해 ES cell의 발생, 분화과정에 있어서의 분자조절기구, 세포 특이적 promotor, 유도 signal등에 대한 연구가 활발히 진행되어져야 할 것이다.

  • PDF

Efficient Performance Enhancement Scheme for Adaptive Antenna Arrays in a Rayleigh Fading and Multicell Environments

  • Kim Kyung-Seok;Ahn Bierng-Chearl;Choi Ik-Gueu
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.49-60
    • /
    • 2005
  • In this paper, an efficient performance enhancement scheme for an adaptive antenna array under the flat and the frequency-selective Rayleigh fadings is proposed. The proposed signal enhancement scheme is the modified linear signal estimator which combines the rank N approximation by reducing noise eigenvalues(RANE) and Toeplitz matrix approximation(TMA) methods into the linear signal estimator. The proposed performance enhancement scheme is performed by not only reducing the noise component from the signal-plus-noise subspace using RANE but also having the theoretical property of noise-free signal using TMA. Consequently, the key idea of the proposed performance enhancement scheme is to greatly enhance the performance of an adaptive antenna array by removing all undesired noise effects from the post-correlation received signal. The proposed performance enhancement scheme applies at the Wiener maximal ratio combining(MRC) method which has been widely used as the conventional adaptive antenna array. It is shown through several simulation results that the performance of an adaptive antenna array using the proposed signal enhancement scheme is much superior to that of a system using the conventional method under several environments, i.e., a flat Rayleigh fading, a fast frequency-selective Rayleigh fading, a perfect/imperfect power control, a single cell, and a multicell.

신항암제 개발을 위한 Cell Cycle 특이적 Inhibitor 검색 방법의 개발

  • 이승기
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.56-56
    • /
    • 1993
  • 새로운 cell cycle 특이적 억제제의 스크리닝 방법의 확립과 이를 이용하여 cell cycle 억제제의 검색 및 세포분열 및 성장을 억제하는 작용의 분석과 이들의 항암작용 및 세포성장 및 분열 억제 작용의 signal transduction mechanism을 규명한다. 이상의 연구를 수행하기 위해 흰쥐 재생간 조직 및 흰쥐 일차 배양 간세포를 연구 모델로 하여 스크리닝 방법을 확립하고, 세포 분열 및 성장 억제제의 연구 대상 약물로는 기존의 천연물 및 미생물의 2차 대사 산물을 분리 정제한 물질등을 사용하여 그 작용 효능을 연구한다. 1) 흰쥐 부분 간 절제 수술 26시간 후 핵 단백질을 분리 2) MPF activity 측정 3) MPF 활성 저해제 생산 균주의 1차 탐색

  • PDF