• Title/Summary/Keyword: Cell permeability

Search Result 607, Processing Time 0.029 seconds

Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling

  • Sabzichi, Mehdi;Hamishehkar, Hamed;Ramezani, Fatemeh;Sharifi, Simin;Tabasinezhad, Maryam;Pirouzpanah, Mohammadbagher;Ghanbari, Parisa;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5311-5316
    • /
    • 2014
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as a transcription factor that controls mechanisms of cellular defense response by regulation of three classes of genes, including endogenous antioxidants, phase II detoxifying enzymes and transporters. Previous studies have revealed roles of Nrf2 in resistance to chemotherapeutic agents and high level expression of Nrf2 has been found in many types of cancer. At physiological concentrations, luteolin as a flavonoid compound can inhibit Nrf2 and sensitize cancer cells to chemotherapeutic agents. We reported luteolin loaded in phytosomes as an advanced nanoparticle carrier sensitized MDA-MB 231 cells to doxorubicin. In this study, we prepared nano phytosomes of luteolin to enhance the bioavailability of luteolin and improve passive targeting in breast cancer cells. Our results showed that cotreatment of cells with nano particles containing luteolin and doxorubicin resulted in the highest percentage cell death in MDA-MB 231cells (p<0.05). Furthermore, luteolin-loaded nanoparticles reduced Nrf2 gene expression at the mRNA level in cells to a greater extent than luteolin alone (p<0.05). Similarly, expression of downstream genes for Nrf2 including Ho1 and MDR1 were reduced significantly (p<0.05). Inhibition of Nrf-2 expression caused a marked increase in cancer cell death (p<0.05). Taken together, these results suggest that phytosome technology can improve the efficacy of chemotherapy by overcoming resistance and enhancing permeability of cancer cells to chemical agents and may thus be considered as a potential delivery system to improve therapeutic protocols for cancer patients.

Antibacterial Effect of Haedokgeumhwa-san against Methicillin-Resistant Staphylococcus aureus (해독금화산(解毒金花散)의 Methicillin-Resistant Staphylococcus aureus에 대한 항균효과)

  • Lee, Ha-Il;Lee, Su-Kyung;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Objectives Methicillin-Resistant Staphylococcus aureus (MRSA) is a human pathogen and a major cause of hospital-acquired infections. New antibacterial agents that have not been compromised by bacterial resistance are needed to treat MRSA-related infections. In this study, we investigated the antimicrobial activity ofethanol extract of Haedokgeumhwa-san (HGH) which prescription is composed of korean medicine against MRSA. Methods The antibacterial activity of HGH extract was evaluated against MRSA strains by using the Disc diffusion method, broth microdilution method (minimal inhibitory concentration; MIC), checkerboard dilution test, and time-kill test; its mechanism of action was investigated by bacteriolysis, detergent or ATPase inhibitors. The checkerboard dilution test was used to examined synergistic effect of ampicillin, oxacillin, ciprofloxacin, vancomycin, gentamicin and norfloxacin in combination with HGH ethanol extract. A time-kill assay was performed a survival curve which was obtained by plotting viable colony counts depending on time on bacterial growth. Results The minimum inhibitory concentration (MIC) of ethanol extract (HGH) ranged from 1,000 to $2,000{\mu}g/mL$ against all the tested bacterial strains, respectively. We are able to confirm that HGH extract has potentially strong antibacterial activity. In the checkerboard dilution test, fractional inhibitory concentration index of HGH in combination with antibiotics indicated synergy or partial synergism against S. aureus. A time-kill study showed that the growth of the tested bacteria was considerably inhibited after 8 hr of treatment with the combination of HGH with selected antibiotics. For measurement of cell membrane permeability, HGH $250{\sim}1,000{\mu}g/mL$ along with concentration of Triton X-100 (TX) and Tris-(hydroxymethyl) aminomethane (Tris) were used. In the other hand, N,N-dicyclohexylcarbodimide (DCCD) and Sodium azide ($NaN_3$) was used as an inhibitor of ATPase. TX, Tris, DCCD and $NaN_3$ cooperation against S. aureus showed synergistic action. Accordingly, antimicrobial activity of HGH was affected by cell membrane and inhibitor of ATPase. Conclusions These results suggest that Haedokgeumhwa-san extract has antibacterial activity, and that HGH extract offers a potential as a natural antibiotic against MRSA.

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

Inhibition of Foodborne Pathogens and Spoilage Bacteria and Their Structural Changes by Ethanol Extract of Schizandra chinensis Baillon (오미자 에탄올 추출물에 의한 식품위해성 세균의 증식 억제 및 세포구조 변화)

  • Kim, Se-Ryoung;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • This study analyzed the antibacterial activity of the ethanol extract of Schizandra chinensis Baillon against food pathogenic microorganisms to determine its capabilities as a natural antimicrobial agent. A paper disc diffusion test, minimum inhibitory concentration (MIC) determination, and time-kill assay showed that the ethanol extract strongly inhibits the growth of Listeria monocytogenes, Bacillus cereus, Escherichia coli O157:H7, and Pseudomonas aeruginosa. Release of cytoplasmic ${\beta}$-galactosidase was detected in E. coli, E. coli O157:H7, S. aureus, and P. aeruginosa treated with the ethanol extract. An increase of outer membrane permeability caused by the ethanol extract was also observed. An outward flow of cell constituents was detected in the Gram negative strains treated with the ethanol extract. These results imply that the inner and outer membranes of cells were partially destroyed and cell constituents were released by the treatment of the S. chinensis Baillon ethanol extract. The results of this study indicate that ethanol extract of S. chinensis Baillon evidences a fairly good antibacterial effect.

Studies on the Fine Structures of Mouse Oocyte Whose Maturation has been suppressed in Vitro by Dibutyryl Cyclic AMP (Dibutyryl Cyclic AMP에 의해 成熟이 抑制된 Mouse 卵子의 微細構造에 관한 硏究)

  • 崔林淳
    • The Korean Journal of Zoology
    • /
    • v.18 no.2
    • /
    • pp.87-101
    • /
    • 1975
  • Electron microscopic studies on the ultrastructure of the mouse oocyte were made to investigate the inhibition of germinal vesicle breakdown by dibutyryl cAMP. The nuclear membrane of the dibutyryl cAMP-treated oocyte is characterized by a decreased degree of folding, maintains the normal double membrane structure, and shows an increased occurrence of the nuclear pore. It is suggested that these may be related to the suppression of the maturation of oocytes at the germinal vesicle. Mitochondria in the control cell were shown to be spread evenly throughout the cytoplasm and structurally underdeveloped or transitionary having little cristae development. On the contrary, mitochondria in the treated oocyte were found to be localized mainly around the nucleus and to show a greater extent of cristae development. The oocyte treated with dibutyryl cAMP appears to have fewer and structurally simpler lysosomes as compared to the control. The Golgi complex in the control oocyte exhibits the typical granular and lamellar structure, whereas that in the treated cell is poorly developed. Many multivesicular bodies, tonofilaments, and free ribosomes were observed in the control as well as in treated cells. The microvilli become structurally irregular, and a development of the perivitelline space is apparent in the treated oocyte. It is concluded that there is no basic difference in the ultrastructure between the oocytes treated with dibutyryl cAMP for 24 hours in the medium and those collected directly from the follicle. However, the finding that dibutyryl cAMP induces a development of more pores along the nuclear membrane strongly suggests the possibility that this compound inhibits the maturation of oocytes by influencing the permeability of the nuclear membrane.

  • PDF

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.

Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC (PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향)

  • Sohyeong Oh;Dong Geun Yoo;Myoung Hwan Kim;Ji Young Park;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.189-195
    • /
    • 2023
  • As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the electrochemical durability of the membrane.

Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice

  • Youngheon Park;Jimin Jang;Jooyeon Lee;Hyosin Baek;Jaehyun Park;Sang-Ryul Cha;Se Bi Lee;Sunghun Na;Jae-Woo Kwon;Seok-Ho Hong;Se-Ran Yang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.191-201
    • /
    • 2023
  • Background and Objectives: O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung. Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice. Methods and Results: cP1P treatment significantly stimulated MSC migration and invasion ability. In cytokine array, secretion of vascular-related factors was increased in cP1P primed hdMSCs (hdMSCcP1P), and cP1P treatment induced inhibition of Lats while increased phosphorylation of Yap. We next determined whether hdMSCcP1P reduce inflammatory response in LPS exposed mice. hdMSCcP1P further decreased infiltration of macrophage and neutrophil, and release of TNF-α, IL-1β, and IL-6 were reduced rather than naïve hdMSC treatment. In addition, phosphorylation of STAT1 and expression of iNOS were significantly decreased in the lungs of MSCcP1P treated mice. Conclusions: Taken together, these data suggest that cP1P treatment enhances hdMSC migration in regulation of Hippo signaling and MSCcP1P provide a therapeutic potential for ALI/ARDS treatment.

The Role of Oxygen Free Radicals from Endothelial Cells in Endotoxin-induced Endothelial Cell Cytotoxity (내독소에 의한 혈관 내피세포 손상에서 혈관 내피세포로부터 유리된 산소기의 역할에 관한 연구)

  • Choi, Hyung-Seok;Jeong, Ki-Ho;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 1994
  • Background: The pathogenetic mechanism of adult respiratory distress syndrome(ARDS) is not clearly defined yet, but it is well known that increased pulmonary capillary permeabilty is characteristic feature of ARDS. The increased alveolar-capillary permeability is usually preceded by damage of pulmonary artery endothelial cells. The released enzymes and oxygen free radicals from the activated neutrophils seem to play a predominant role in endothelial cell cytotoxicity. The activated neutrophils, however, probably are not the sole contributing factor in this type of damage because many cases of ARDS have been reported in severe neutropenia. Bacterial endotoxin perse and/or oxygen free radicals released from endothelial cells are suggested to be possible factors that contribute to the development of ARDS. The purpose of this study is to investigate the direct cytotoxicity of endotoxin and the role of oxygen free radicals released from the endothelial cells in endotoxin-induced endothelial cell cytotoxicity. Methods: First, to investigate whether endotoxin is cytotoxic to HUVE by itself, various doses of endotoxin were added to culture medium and cytotoxicity was measured. Second, to evaluate the possible role of oxygen free radical in endotoxin-induced HUVE cytotoxicity, various antioxidants were added on the endotoxin-induced HUVE cytotoxicity and cytotoxicity was measured. Third, to verify the release of oxygen free radicals from HUVE, the concentrations of hydrogen peroxide in the endotoxin-treated culture supernatant were measured. Finally, to observe the cytotoxic effect of hydrogen peroxide, HUVE cytotoxicity in the presence of various doses of hydrogen peroxide was measured. The fourth generations of subcultured HUVE from primary culture were used. The cell cytotoxicity was quantified by the chromium-51 release assay. Results: 1) Endotoxin alone showed HUVE cytotoxicity in a dose-dependent fashion. 2) Endotoxin-induced HUVE cytotoxicity was significantly attenuated by the pretreatment of catalase and DMTU. 3) Hydrogen peroxide was released from HUVE after endotoxin treatment in a dose-dependent fashion. 4) Exogenous hydrogen peroxide also showed HUVE cytotoxicity in a dose-dependent fashion. Conclusion: These results suggest that endotoxin alone can directly injure HUVE, and, oxygen-free radicals released from HUVE in response to endotoxin may also participate in the endotoxin-induced HUVE cytotoxicity.

  • PDF