• Title/Summary/Keyword: Cell permeability

Search Result 607, Processing Time 0.036 seconds

Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet (AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석)

  • JONGBIN WOO;YOUNGHYEON KIM;SANGSEOK YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage (그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘)

  • Park, So Hyun;Shin, Hyuk Soo;Lee, Nan Hee;Hong, In Kee;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.

Diazoxide Suppresses Mitochondria-dependent Apoptotic Signaling in Endothelial Cells Exposed to High Glucose Media (고농도 당에 노출된 혈관 내피세포에서 미토콘드리아 의존성 세포사멸 기작 활성화에 미치는 diazoxide의 억제 효과)

  • Jung, Hyun Ju;Kim, Tae Hyun;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1393-1400
    • /
    • 2019
  • In the present study, we examined the effect of mitochondrial K+ channel opener diazoxide on the mitochondria-dependent apoptotic signaling in endothelial cells exposed to high glucose (HG) media. Endothelial cells derived from human umbilical veins were exposed to HG media containing 30 mM glucose, and the degree of apoptotic cell death associated with activation of the mitochondria-dependent apoptotic signaling pathway was determined. Exposure to HG media was seen to enhance apoptotic cell death in a time-dependent manner. In these cells, activation of caspases 3, 8, and 9 was observed, and while caspase-3 and -9 inhibitors suppressed the HG-induced apoptotic cell death, a caspase-8 inhibitor did not. The HG-treated cells exhibited disruption of mitochondrial membrane potential, formation of permeability transition pores, and cytosolic release of cytochrome c. Subsequently, diazoxide was seen to attenuate the HG-induced apoptotic cell death; caspase-9 activation was suppressed but caspase 8 was not. Diazoxide also suppressed the depolarization of mitochondrial membrane potential, the formation of mitochondrial permeability transition pores, and the release of cytochrome c. These effects were significantly inhibited by 5-hydroxydecanoate, a selective blocker of ATP-sensitive K+ channels (KATP). The present results demonstrate that diazoxide exhibits a beneficial effect to ameliorate HG-induced endothelial cell apoptosis. Opening the KATP could help preserve the functional integrity of mitochondria and provide an underlying mechanism to suppress HG-triggered apoptotic signaling.

Inhibition of Cell Invasion by Indole-3-Carbinol in OVCAR-3 Human Ovarian Cancer Cells (Indole-3-carbinol에 의한 OVCAR-3 인체 난소암세포의 침윤 억제)

  • Choi, Yung-Hyun;Kim, Sung-Ok
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.923-931
    • /
    • 2011
  • In the present study, we investigated the effect of indole-3-carbinol (I3C), a natural compound present in vegetables, on the cell migration and invasion of OVCAR-3 ovarian cancer cells. Our results indicated that I3C inhibited the proliferation of OVCAR-3 cells, a process which was associated with inhibition of cell motility as determined by wound healing experiments and cell invasion studies. I3C treatment increased the tightness of the tight junctions (TJs), which was demonstrated by an increase in transepithelial electrical resistance and a decrease in paracellular permeability. The RT-PCR and immunoblotting results indicated that I3C repressed the levels of claudin-3 as well as claudin-4, proteins that comprise a major part of TJs and play a key role in the control and selectivity of paracellular transport. Furthermore, the activities of matrix metalloproteinase (MMP)-2 and MMP-9 were also decreased by treatment with I3C, which was connected with the down-regulation of their mRNAs and protein expression. The results suggest that I3C may be expected to inhibit cancer cell metastasis and invasion by restoring TJs and decreasing MMP activity in ovarian cancer cell line OVCAR-3.

Effects of Ixeris dentata Extract on Radical Oxygen Species and Bcl-2 Family in Human Breast Cancer Cells (씀바귀 추출물이 인체유방암세포의 활성 산소 및 Bcl-2 Family에 미치는 영향)

  • Kim, Hee-Jung;Kang, Keum-Jee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.6
    • /
    • pp.739-747
    • /
    • 2014
  • The aim of the study was to determine the effects of Ixeris dentata extract (IDE) on anticancer activity in human breast cancer MDA-MB-231 cells at both cellular and molecular levels. The cells were cultured in the presence of 0, 20, 30 and $40{\mu}g/mL$ Ixeris dentata extract for 24 hours, respectively. At the end of culture, cytochemical analyses for MTT activity, trypan blue dye exclusion, Annexin V-FITC Apoptosis, and radical oxygen species (ROS) were conducted. RT-PCR was also performed to determine whether or not alterations in cell viability affect the Bax/Bcl-2 ratio. MTT assay showed that relative cell viability decreased in a dose-dependent manner (p<0.05). Reduction of cell viability matched well with increased cell membrane permeability as determined by trypan blue dye exclusion test (p<0.05). The rates of intracellular ROS also increased in a similar manner to those of TB-stained cells. There was an associated shift of apoptotic cells from early to late apoptosis between the 30 and $40{\mu}g/mL$. Bax/Bcl-2 ratio significantly increased along with significant decreases in Bcl-2 expression between 30 and $40{\mu}g/mL$ groups (p<0.05). In conclusion, anticancer activity of Ixeris dentata extract is modulated by a reduction in cell viability along with increased membrane permeability, leading to ROS accumulation within cells, and subsequently cell death through an apoptotic pathway that involves Bax and Bcl-2 in human breast cancer MDA-MB-231 cells.

Modification of Nafion Membranes for Reduction of Methanol Transport Rate

  • Kang, Dong-Hoon;Kim, Duk-Joon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.127-128
    • /
    • 2006
  • Nafion/basic polymer composite membranes were prepared to reduce the methanol crossover for the application of direct methanol fuel cell. The thermal and mechanical properties increased with increasing basic polymer contents due to the formation of complex via acid/basic interaction. The water uptake, proton conductivity, methanol permeability decreased with increasing basic polymer concentration by reduction of acidity associated with the formation of acid/base complex. The molecular effect on those properties was not considerable.

  • PDF

Brain-to-blood efflux transport of taurine at the blood-brain barrier in rats

  • Lee, Na-Young;Kang, Young-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.200.1-200.1
    • /
    • 2003
  • The purpose of this study is to examine whether an brain to blood efflux system for taurine is present on the blood-brain barrier (BBB) or not and this efflux transport system is regulated by CNS cell damage with oxidative stress agent such as diethyl maleate (DEM) or tumor necrosis factor-a (TNF-${\alpha}$), by using the brain efflux index (BEI) method. The brain efflux index value is defined as the relative amount of test compound efflux from cerebrum compared with that of a reference compound, [$\^$14/C] carboxyinulin, which has limited BBB permeability. (omitted)

  • PDF