DOI QR코드

DOI QR Code

Inhibition of Cell Invasion by Indole-3-Carbinol in OVCAR-3 Human Ovarian Cancer Cells

Indole-3-carbinol에 의한 OVCAR-3 인체 난소암세포의 침윤 억제

  • Choi, Yung-Hyun (Department of Biomaterial Control (BK21 program) and Blue-Bio Industry RIC, Dongeui University) ;
  • Kim, Sung-Ok (Department of Biomaterial Control (BK21 program) and Blue-Bio Industry RIC, Dongeui University)
  • 최영현 (동의대학교 대학원 바이오물질제어학과 및 블루바이오 소재 개발 센터) ;
  • 김성옥 (동의대학교 대학원 바이오물질제어학과 및 블루바이오 소재 개발 센터)
  • Received : 2011.03.18
  • Accepted : 2011.05.03
  • Published : 2011.07.30

Abstract

In the present study, we investigated the effect of indole-3-carbinol (I3C), a natural compound present in vegetables, on the cell migration and invasion of OVCAR-3 ovarian cancer cells. Our results indicated that I3C inhibited the proliferation of OVCAR-3 cells, a process which was associated with inhibition of cell motility as determined by wound healing experiments and cell invasion studies. I3C treatment increased the tightness of the tight junctions (TJs), which was demonstrated by an increase in transepithelial electrical resistance and a decrease in paracellular permeability. The RT-PCR and immunoblotting results indicated that I3C repressed the levels of claudin-3 as well as claudin-4, proteins that comprise a major part of TJs and play a key role in the control and selectivity of paracellular transport. Furthermore, the activities of matrix metalloproteinase (MMP)-2 and MMP-9 were also decreased by treatment with I3C, which was connected with the down-regulation of their mRNAs and protein expression. The results suggest that I3C may be expected to inhibit cancer cell metastasis and invasion by restoring TJs and decreasing MMP activity in ovarian cancer cell line OVCAR-3.

본 연구에서는 식물체에 널리 분포하는 indole-3-carbinol (I3C)에 의한 OVCAR-3 인체 난소암세포의 이동성 및 침윤성 억제 가능성과 이와 연관된 기전을 조사하였다. 본 연구의 결과에 의하면 I3C에 의한 OVCAR-3 세포의 증식억제는 세포의 이동성 억제와 연관이 있었으며, 이를 wound healing 및 matrigel invasion assay로 확인 하였다. 아울러 I3C 처리에 의하여 transepithelial electrical resistance가 증가되었으며, cellular paracellular permeability는 감소되었는데, 이는 I3C 처리에 의해 세포 내 치밀결합(tight junctions, TJs)의 tightness가 증가되었음을 의미한다. RT-PCR 및 immunoblotting 결과에 의하면, I3C는 TJs의 구성 성분이면서 paracellular transport의 선택적 투과성을 조절하는 주요 인자인 claudin-3 및 -4의 발현을 유의적으로 억제하였다. 또한 matrix metalloproteinase (MMP)-2 및 -9의 활성이 I3C 처리에 의하여 매우 억제되었는데, 이는 그들의 mRNA 및 단백질 수준에서의 발현 감소와 연관성이 있었다. 따라서 I3C에 의한 OVCAR-3 난소암세포의 침윤성 억제는 TJs 기능의 강화와 MMP 활성의 저하가 주요 인자로 작용함을 알 수 있었다.

Keywords

References

  1. Agarwal, R., T. D'Souza, and P. J. Morin. 2005. Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 65, 7378-7385 https://doi.org/10.1158/0008-5472.CAN-05-1036
  2. Aggarwal, B. B. and H. Ichikawa. 2005. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4, 1201-1215. https://doi.org/10.4161/cc.4.9.1993
  3. Anderson, J. M. 2006. Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. 16, 126-130.
  4. Bonnesen, C., I. M. Eggleston, and J. D. Hayes. 2001. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 61, 6120-6130.
  5. Brandi, G., M. Paiardini, B. Cervasi, C. Fiorucci, P. Filippone, C. De Marco, N. Zaffaroni, and M. Magnani. 2003. A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res. 63, 4028-4036.
  6. Chinni, S. R., Y. Li, S. Upadhyay, P. K. Koppolu, and F. H. Sarkar. 2001. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20, 2927-2936. https://doi.org/10.1038/sj.onc.1204365
  7. Cho, H. J., S. Y, Park, E. J. Kim, J. K. Kim, and J. H. Park. 2011. 3,3'-Diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol. Carcinog. 50, 100-112. https://doi.org/10.1002/mc.20698
  8. Choi, H. S., M. C. Cho, H. G. Lee, and D. Y. Yoon. 2010. Indole-3-carbinol induces apoptosis through p53 and activation of caspase-8 pathway in lung cancer A549 cells. Food Chem. Toxicol. 48, 883-890. https://doi.org/10.1016/j.fct.2009.12.028
  9. Choi, Y. H., W. Y. Choi, S. H. Hong, S. O. Kim, G. Y. Kim, W. H. Lee, and Y. H. Yoo. 2009. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem. Biol. Interact. 179, 185-191. https://doi.org/10.1016/j.cbi.2008.11.009
  10. Dashwood, R. H., A. T. Fong, D. N. Arbogast, L. F. Bjeldanes, J. D. Hendricks, and G. S. Bailey. 1994. Anticarcinogenic activity of indole-3-carbinol acid products: ultra-sensitive bioassay by trout embryo microinjection. Cancer Res. 54, 3617-3619.
  11. Davidson, B., R. Reich, C. G. Trope, T. L. Wang, and IeM. Shih. 2010. New determinates of disease progression and outcome in metastatic ovarian carcinoma. Histol. Histopathol. 25, 1591-1609.
  12. De Oliveira, S. S., I. M. De Oliveira, W. De Souza, and J. A. Morgado-Diaz. 2005. Claudins upregulation in human colorectal cancer. FEBS Lett. 579, 6179-6185. https://doi.org/10.1016/j.febslet.2005.09.091
  13. Duffy, M. I., T. M. Maguire, A. Hill, E. McDermott, and N. O'Higgins. 2000. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2, 252-257. https://doi.org/10.1186/bcr65
  14. Exon, J. H., E. H. South, B. A. Magnuson, and K. Hendrix. 2001. Effects of indole-3-carbinol on immune responses, aberrant crypt foci, and colonic crypt cell proliferation in rats. J. Toxicol. Environ. Health A 62, 561-573. https://doi.org/10.1080/152873901300007842
  15. Gitter, A. H., K. Bendfeldt, K. Schmitz, J. D. Schulzke, C. J. Bentzel, and M. Fromm. 2000. Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-$\alpha$. Ann. N. Y. Acad. Sci. 915,193-203.
  16. Goskonda, V. R., M. A. Khan, C. M. Hutak, and I. K. Reddy. 1999. Permeability characteristics of novel mydriatic agents using an in vitro cell culture model that utilizes SIRC rabbit corneal cells. J. Pharm. Sci. 88, 180-184. https://doi.org/10.1021/js980362t
  17. Hewitt, K. J., R. Agarwal, and P. J. Morin. 2006. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6, 186-193. https://doi.org/10.1186/1471-2407-6-186
  18. Kojima, T., T. Tanaka, and H. Mori. 1994. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res. 54, 1446-1449.
  19. Kominsky, S. L. 2006. Claudins: emerging targets for cancer therapy. Expert Rev. Mol. Med. 8, 1-11.
  20. Liang, M., C. R. Ramsey, and F. G. Knox. 1999. The paracellular permeability of opossum kidney cells, a proximal tubule cell line. Kidney Int. 56, 2304-2308. https://doi.org/10.1046/j.1523-1755.1999.00787.x
  21. Loub, W. D., L. W. Wattenberg, and D. W. Davis. 1975. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J. Natl. Cancer Inst. 54, 985-988.
  22. Matrisian, L. M. 1992. The matrix-degrading metalloproteinases. Bioessays 14, 455-463. https://doi.org/10.1002/bies.950140705
  23. Meng, Q., M. Qi, D. Z. Chen, R. Yuan, I. D. Goldberg, E. M. Rosen, K. Auborn, and S. Fan. 2000. Suppression of breast cancer invasion and migration by indole-3-carbinol:associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J. Mol. Med. 78, 155-165. https://doi.org/10.1007/s001090000088
  24. Mook, O. R., W. M. Frederiks, and C. J. Van Noorden. 2004. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta. 1705, 69-89.
  25. Morin, P. J. 2005. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 65, 9603-9606. https://doi.org/10.1158/0008-5472.CAN-05-2782
  26. Morse, M. A., S. D. LaGreca, S. G. Amin, and F. L. Chung. 1990. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitros-amino)- 1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 50, 2613-2617.
  27. Mullin, J. M., N. Agostino, E. Rendon-Huerta, and J. J. Thornton. 2005. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov. Today 10, 395-408. https://doi.org/10.1016/S1359-6446(05)03379-9
  28. Ouban, A. and A. A. Ahmed. 2010. Claudins in human cancer: a review. Histol. Histopathol. 25, 83-90.
  29. Rangel, L. B., R. Agarwal, T. D'Souza, E. S. Pizer, P. L. Alò, W. D. Lancaster, L. Gregoire, D. R. Schwartz, K. R. Cho, and P. J. Morin. 2003. Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin. Cancer Res. 9, 2567-2575.
  30. Rogan, E. G. 2006. The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 20, 221-228.
  31. Schneeberger, E. E. and R. D. Lynch. 2004. The tight junction: a multifunctional complex. Am. J. Physiol. Cell. Physiol. 286, 1213-1228. https://doi.org/10.1152/ajpcell.00558.2003
  32. Soler, A. P., R. D. Miller, K. V. Laughlin, N. Z. Carp, D. M. Klurfeld, and J. M. Mullin. 1999. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20, 1425-1431. https://doi.org/10.1093/carcin/20.8.1425
  33. Takada, Y., M. Andreeff, and B. B. Aggarwal. 2005. Indole-3-carbinol suppresses NF-${\kappa}B$ and $I{\kappa}B{\alpha}$ kinase activation, causing inhibition of expression of NF-${\kappa}B$-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood 106, 641-649. https://doi.org/10.1182/blood-2004-12-4589
  34. Tunggal, J. A., I. Helfrich, A. Schmitz, H. Schwarz, D. Günzel, M. Fromm, R. Kemler, T. Krieg, and C. M. Niessen. 2005. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24, 1146-1156. https://doi.org/10.1038/sj.emboj.7600605
  35. Van Deun, K., F. Pasmans, F. Van Immerseel, R. Ducatelle, and F. Haesebrouck. 2008. Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation. Br. J. Nutr. 100, 480-484. https://doi.org/10.1017/S0007114508921693
  36. Van Itallie, C. M. and J. M. Anderson. 2006. Claudins and epithelial paracellular transport. Annu. Rev. Physiol. 68, 403-429. https://doi.org/10.1146/annurev.physiol.68.040104.131404
  37. Vihinen, P. R. Ala-aho, and V. M. Kähäri. 2005. Matrix metalloproteinases as therapeutic targets in cancer. Curr. Cancer Drug Targets 5, 203-220. https://doi.org/10.2174/1568009053765799
  38. Wang, P. H., J. L. Ko, H. T. Tsai, S. F. Yang, C. P. Han, L. Y. Lin, and G. D. Chen. 2008. Clinical significance of matrix metalloproteinase-2 in cancer of uterine cervix: a semiquantitative study of immunoreactivities using tissue array. Gynecol. Oncol. 108, 533-542. https://doi.org/10.1016/j.ygyno.2007.11.018
  39. Wattenberg, L. W. and W. D. Loub. 1978. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 38, 1410-1413.
  40. Williams, T. I., K. L. Toups, D. A. Saggese, K. R. Kalli, W. A. Cliby, and D. C. Muddiman. 2007. Epithelial ovarian cancer: disease etiology, treatment, detection, and investigational gene, metabolite, and protein biomarkers. J. Proteome Res. 6, 2936-2962. https://doi.org/10.1021/pr070041v
  41. Zhang, X. and D. Malejka-Giganti. 2003. Effects of treatment of rats with indole-3-carbinol on apoptosis in the mammary gland and mammary adenocarcinomas. Anticancer Res. 23, 2473-2479.

Cited by

  1. UnripeRubus coreanusMiquel suppresses migration and invasion of human prostate cancer cells by reducing matrix metalloproteinase expression vol.78, pp.8, 2014, https://doi.org/10.1080/09168451.2014.921550