• Title/Summary/Keyword: Cell mobilization

Search Result 72, Processing Time 0.024 seconds

The effect of the dexamethasone, cytarabine, and cisplatin (DHAP) regimen on stem cell mobilization and transplant outcomes of patients with non-Hodgkin's lymphoma who are candidates for up-front autologous stem cell transplantation

  • Jeon, So Yeon;Yhim, Ho-Young;Kim, Hee Sun;Kim, Jeong-A;Yang, Deok-Hwan;Kwak, Jae-Yong
    • The Korean journal of internal medicine
    • /
    • v.33 no.6
    • /
    • pp.1169-1181
    • /
    • 2018
  • Background/Aims: Data on dexamethasone, cytarabine, and cisplatin (DHAP) as a mobilization regimen, compared to high-dose cyclophosphamide (HDC), for up-front autologous stem cell transplantation (ASCT) in non-Hodgkin's lymphoma (NHL) is limited. Methods: Consecutive patients with aggressive NHL treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or rituximab-CHOP who underwent chemomobilization using HDC or DHAP plus granulocyte-colony stimulating factor (G-CSF) for up-front ASCT were enrolled from three institutions between 2004 and 2014. Results: Ninety-six patients (57 men) were included. Sixty-five patients (67.7%) received HDC; and 31 (32.3%), DHAP. The total CD34+ cells mobilized were significantly higher in patients receiving DHAP (16.1 vs. $6.1{\times}10^6/kg$, p = 0.001). More patients achieved successful mobilization with DHAP (CD34+ cells ${\geq}5.0{\times}10^6/kg$) compared to HDC (87.1% vs. 61.5%, respectively; p = 0.011), particularly within the first two sessions of apheresis (64.5% vs. 32.3%, respectively; p = 0.003). Mobilization failure rate (CD34+ cells < $2.0{\times}10^6/kg$) was significantly higher in patients receiving HDC (20.0% vs. 3.2%, p = 0.032). On multivariate analysis, the DHAP regimen (odds ratio, 4.12; 95% confidence interval, 1.12 to 15.17) was an independent predictor of successful mobilization. During chemomobilization, patients receiving HDC experienced more episodes of febrile neutropenia compared to patients receiving DHAP (32.3% vs. 12.9%, p = 0.043). Conclusions: The DHAP regimen was associated with a significantly higher efficacy for stem cell mobilization and lower frequency of febrile neutropenia. Therefore, DHAP plus G-CSF is an effective for mobilization in patients with aggressive NHL who were candidates for up-front ASCT.

Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization

  • Park, Min Hee;Kim, Namoh;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.138-143
    • /
    • 2017
  • Ovariectomy-induced bone loss is related to an increased deposition of osteoclasts on bone surfaces. We reported that the 36-amino-acid-long neuropeptide Y (NPY) could mobilize hematopoietic stem/progenitor cells (HSPCs) from the bone marrow to the peripheral blood by regulating HSPC maintenance factors and that mobilization of HSPCs ameliorated low bone density in an ovariectomy-induced osteoporosis mouse model by reducing the number of osteoclasts. Here, we demonstrated that new NPY peptides, recombined from the cleavage of the full-length NPY, showed better functionality for HSPC mobilization than the full-length peptide. These recombinant peptides mediated HSPC mobilization with greater efficiency by decreasing HSPC maintenance factors. Furthermore, treatment with these peptides reduced the number of osteoclasts and relieved ovariectomy-induced bone loss in mice more effectively than treatment with full-length NPY. Therefore, these results suggest that peptides recombined from full-length NPY can be used to treat osteoporosis.

Effects of Exogenous ATP on Calcium Mobilization and Cell Proliferation in C6 Glioma Cell

  • Lee, Eun-Jung;Cha, Seok-Ho;Lee, Woon-Kyu;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.419-425
    • /
    • 1998
  • To clarify the effect of extracellular ATP in cultured C6 glioma cells, ATP-induced cytosolic free calcium ($[Ca^{2+}]_i$) mobilization and cell proliferation were investigated. ATP-induced $[Ca^{2+}]_i$ increased in a dose-dependent manner $(10^{-7}\;M{\sim}10^{-3}\;M)$. ATP-induced $[Ca^{2+}]_i$ increases were slightly slowed in extracellular calcium-free conditions especially in sustained phase. ATP-induced $[Ca^{2+}]_i$ increment was also inhibited by the pretreatment of U73122, a phospholipase C (PLC) inhibitor, in a time-dependent manner. Suramin, a putative $P_{2Y}$ receptor antagonist, dose-dependently weakened ATP-induced $[Ca^{2+}]_i$ mobilization. Significant increases in cell proliferation were observed at 2, 3, and 4 days after ATP was added. Stimulated cell proliferation was also observed with adenosine at days 2 and 3. This cell proliferation was significantly inhibited by the treatment with suramin. Ionomycin also stimulated cell proliferation in a concentration-dependent manner. In conclusion, we suggest that extracellular ATP stimulates C6 glioma cell proliferation via intracellular free calcium mobilization mediated by purinoceptor.

  • PDF

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young;Min, Woo-Kie;Park, Min Hee;Kim, NamOh;Lee, Jong Kil;Jin, Hee Kyung;Choi, Je-Yong;Kim, Shin-Yoon;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.439-444
    • /
    • 2014
  • Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

A scheme on strengthening of R.O.K reserved force (예비전력 정예화 방안)

  • Kim, Jae-Sam
    • Journal of National Security and Military Science
    • /
    • s.5
    • /
    • pp.1-45
    • /
    • 2007
  • Reserved forces of ROKA are in charge of replacement of TOE in the wartime and mission of rear area operation. But there is institutional inertia in the law and organization oriented to fill human resources rather than take mission. We need to prepare for the investment and arrangement of reserved forces as military power that would be replaced standing forces. In this portion, to reinforce reserve forces elite, First, efficient mobilization regulations and systems are suggested. I covered a maintenance of relevant mobilization ordinances which need to legislated and approved by national assembly for wartime and development of mobilization system which might lose the appropriate time for mobilization due to complicated declaration procedures and measures to overcome the panic at the initial stage of the war and organization and employment of nationwide transportation system and mobilization center. To ensure efficient resource management and mobilization of reserve forces with a number of approximately 3 million, there's a necessity of organization for integration and conciliation. To make it real, I suggested establishing and employing the mobilization center, on first phase, employ the mobilization center focusing on homeland divisions, on second phase, it is advisable to convert to national level mobilization system and develop to central mobilization center focusing on national emergency planning committee. During peacetime, in conjunction with Mobilization Cell, mobilization center can conduct resource survey and integrate and manage mobilization resources and take charge of mobilization training of subordinate units, and during wartime, in conjunction with mobilization coordination team and Cell, can ensure the execution of mobilization. Second, Future oriented reserve forces management system such as service system of reserve forces and support system of homeland defense operations. Current service and trainings of reserve forces by the year have very low connection, as it is very complex to manage the resources and trainings, and service and training lack the equity, re-establishment of service system is required. Also in an aspect of CSS and cultivation support for reserve forces, as the scope and limitation of responsibility between the armed forces and autonomous organization is obscure, conditions to conduct actual-fighting exercises are limited. Concentrated budgetting is extremely difficult because reserve forces training fields are scattered nationwide, and facilities and equipments are rapidly getting older. To improve all these, I suggest the organization of homeland defense battalion with a unit of "City-Gun-District" and supporting the local reserve forces. Conduct unit replacement or personal replacement for those who have finished their 1 or 2 years and homeland defense operation duty for those with 3-5 years for consistency and simplification. Third, I suggest Future oriented Reserved Training(FRT) and Training Center oriented training management to establish a reliable reserve training. Reserves carry out expansion of unit, conventional combat mission, homeland defense and logistics support during wartime, and actual-fighting exercise, and disaster relief, peace keeping activities. Despite diverse activities and roles, their training condition still stays definitely poor. For these reasons, Modernization of weapons and facilities through gradual replacement and procurement is essential to enhance mobilization support system.

  • PDF

Characterization of intracellular Ca2+ mobilization in gefitinib-resistant oral squamous carcinoma cells HSC-3 and -4

  • Kim, Mi Seong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.176-183
    • /
    • 2021
  • Oral squamous cell carcinoma (OSCC) metastasis is characterized by distant metastasis and local recurrence. Combined chemotherapy with cisplatin and 5-fluorouracil is routinely used to treat patients with OSCC, and the combined use of gefitinib with cytotoxic drugs has been reported to enhance the sensitivity of cancer cells in vitro. However, the development of drug resistance because of prolonged chemotherapy is inevitable, leading to a poor prognosis. Therefore, understanding alterations in signaling pathways and gene expression is crucial for overcoming the development of drug resistance. However, the altered characterization of Ca2+ signaling in drug-resistant OSCC cells remains unclear. In this study, we investigated alterations in intracellular Ca2+ ([Ca2+]i) mobilization upon the development of gefitinib resistance in human tongue squamous carcinoma cell line (HSC)-3 and HSC-4 using ratiometric analysis. This study demonstrated the presence of altered epidermal growth factor- and purinergic agonist-mediated [Ca2+]i mobilization in gefitinib-resistant OSCC cells. Moreover, Ca2+ content in the endoplasmic reticulum, store-operated calcium entry, and lysosomal Ca2+ release through the transient receptor potential mucolipin 1, were confirmed to be significantly reduced upon the development of apoptosis resistance. Consistent with [Ca2+]i mobilization, we identified modified expression levels of Ca2+ signaling-related genes in gefitinib-resistant cells. Taken together, we propose that the regulation of [Ca2+]i mobilization and related gene expression can be a new strategy to overcome drug resistance in patients with cancer.

Thimerosal generates superoxide anion by activating NADPH oxidase: a mechanism of thimerosal-induced calcium release

  • Kim, Eui-Kyung;Ryu, Sung-Ho;Suh, Pann-Ghill
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.229-235
    • /
    • 2002
  • Thimerosal, a widely used preservative, has been well known to induce intracellular calcium mobilization in various cell types. However, the mechanism of its calcium mobilization is not clearly understood yet. For studying the mechanism of thimerosal-mediated calcium release, we have used HL60 cells in calcium-free Lockes solution that has no extracellular calcium. Thimerosal significantly reduced the lag period of initial calcium release whereas it enhanced the rate and magnitude of the calcium release in a dose-dependent manner. At the same time, we found that thimerosal generated superoxide anion by activating NADPH oxidase in dose- and time-dependent manner. Interestingly, the kinetics and the dosedependency of superoxide anion generation were very similar to those of intracellular calcium mobilization. In inhibitors study, the thimerosal-induced superoxide anion generation was significantly suppressed by DMSO as well as superoxide dismutase but not by genistein or EGTA. Surprisingly, the pretreatment with N-Acetyl-$_{L}$-Cysteine blocked almost completely the thimerosal-induced calcium increase, indicating that ROS playa key role in the calcium mobilization. The present results suggest that thimerosal-induced calcium mobilization is possibly mediated by the activation of NADPH oxidase and subsequent ROS generation.n.

  • PDF

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization

  • Kim, In-Ki;Park, So-Jung;Park, Jhang-Ho;Lee, Seung-Ho;Hong, Sung-Eun;Reed, John C.
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.482-487
    • /
    • 2012
  • To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.

Short-chain fatty acids, including acetate, propionate, and butyrate, elicit differential regulation of intracellular Ca2+ mobilization, expression of IL-6 and IL-8, and cell viability in gingival fibroblast cells

  • Kim, So Hui;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.64-69
    • /
    • 2020
  • Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are secondary metabolites produced by anaerobic fermentation of dietary fibers in the intestine. Intestinal SCFAs exert various beneficial effects on intestinal homeostasis, including energy metabolism, autophagy, cell proliferation, immune reaction, and inflammation, whereas contradictory roles of SCFAs in the oral cavity have been reported. Herein, we found that low and high concentrations of SCFAs induce differential regulation of intracellular Ca2+ mobilization and expression of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, respectively, in gingival fibroblast cells. Additionally, cell viability was found to be differentially regulated in response to low and high concentrations of SCFAs. These findings demonstrate that the physiological functions of SCFAs in various cellular responses are more likely dependent on their local concentration.

Cell Versus Chemokine Therapy Effects on Cell Mobilization to Chronically Dysfunctional Urinary Sphincters of Nonhuman Primates

  • Williams, J. Koudy;Mariya, Silmi;Suparto, Irma;Lankford, Shannon S.;Andersson, Karl-Erik
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.260-267
    • /
    • 2018
  • Purpose: A major question remaining in approaches to tissue engineering and organ replacement is the role of native mobilized native cells in the regeneration process of damaged tissues and organs. The goal of this study was to compare the cell mobilizing effects of the chemokine CXCL12 and cell therapy on the urinary sphincter of nonhuman primates (NHP) with chronic intrinsic urinary sphincter dysfunction. Methods: Either autologous lenti-M-cherry labeled skeletal muscle precursor cells (skMPCs) or CXCL12 were injected directly into the sphincter complex of female NHPs with or without surgery-induced chronic urinary sphincter dysfunction (n=4/treatment condition). All monkeys had partial bone marrow transplantation with autologous lenti-green fluorescent protein (GFP) bone marrow cells prior to treatment. Labeled cells were identified, characterized and quantified using computer-assisted immunohistochemistry 6 months posttreatment. Results: GFP-labeled bone marrow cells (BMCs) were identified in the bone marrow and both BMCs and skMPCs were found in the urinary sphincter at 6-month postinjection. BMCs and skMPCs were present in the striated muscle, smooth muscle, and lamina propria/urothelium of the sphincter tissue. Sphincter injury increased the sphincter content of BMCs when analyzed 6-month postinjection. CXCL12 treatment, but not skMPCs, increased the number of BMCs in all layers of the sphincter complex (P<0.05). CXCL12 only modestly (P=0.15) increased the number of skMPCs in the sphincter complex. Conclusions: This dual labeling methodology now provides us with the tools to measure the relative number of locally injected cells versus bone marrow transplanted cells. The results of this study suggest that CXCL12 promotes mobilization of cells to the sphincter, which may contribute more to sphincter regeneration than injected cells.