DOI QR코드

DOI QR Code

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization

  • Kim, In-Ki (Asan Institute for Life Science, Asan Medical Center) ;
  • Park, So-Jung (Asan Institute for Life Science, Asan Medical Center) ;
  • Park, Jhang-Ho (Asan Institute for Life Science, Asan Medical Center) ;
  • Lee, Seung-Ho (Major of Nano-Bioengineering, University of Incheon) ;
  • Hong, Sung-Eun (Sanford-Burnham Medical Research Institute) ;
  • Reed, John C. (Sanford-Burnham Medical Research Institute)
  • Received : 2012.01.27
  • Accepted : 2012.05.23
  • Published : 2012.08.31

Abstract

To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.

Keywords

References

  1. Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes. Dev. 13, 1211-1233. https://doi.org/10.1101/gad.13.10.1211
  2. Ron, D. and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529. https://doi.org/10.1038/nrm2199
  3. Pizzo, P. and Pozzan, T. (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends. Cell Biol. 17, 511-517. https://doi.org/10.1016/j.tcb.2007.07.011
  4. Kim, I., Xu, W. and Reed, J. C. (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 7, 1013-1030. https://doi.org/10.1038/nrd2755
  5. Malhotra, J. D. and Kaufman, R. J. (2007) The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716-731. https://doi.org/10.1016/j.semcdb.2007.09.003
  6. Frand, A. R., Cuozzo, J. W. and Kaiser, C. A. (2000) Pathways for protein disulphide bond formation. Trends Cell Biol. 10, 203-210. https://doi.org/10.1016/S0962-8924(00)01745-1
  7. Ma, Y. and Hendershot, L. M. (2004) ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat. 28, 51-65. https://doi.org/10.1016/j.jchemneu.2003.08.007
  8. Harding, H. P. (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153-1163. https://doi.org/10.1016/S1097-2765(01)00264-7
  9. Yoshida, H. (2007) ER stress and diseases. FEBS J. 274, 630-658. https://doi.org/10.1111/j.1742-4658.2007.05639.x
  10. Zhong, L. T., Sarafian, T., Kane, D. J., Charles, A. C., Mah, S. P., Edwards, R. H. and Bredesen, D. E. (1993) bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. U.S.A. 90, 4533-4537. https://doi.org/10.1073/pnas.90.10.4533
  11. Haas, S. J. and Wree, A. (2002) Dopaminergic differentiation of the Nurr1-expressing immortalized mesencephalic cell line CSM14.1 in vitro. J. Anat. 201, 61-69. https://doi.org/10.1046/j.1469-7580.2002.00072.x
  12. Boyce, M. (2005) A selective inhibitor of eIF2[alpha] dephosphorylation protects cells from ER stress. Science 307, 935-939. https://doi.org/10.1126/science.1101902
  13. Zhang, J. H., Chung, T. D. and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67-73. https://doi.org/10.1177/108705719900400206
  14. Kim, I., Shu, C. W., Xu, W., Shiau, C. W., Grant, D., Vasile, S., Cosford, N. D. and Reed, J. C. (2009) Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J. Biol. Chem. 284, 1593-1603. https://doi.org/10.1074/jbc.M807308200
  15. Ravanan, P., Sano, R., Talwar, P., Ogasawara, S., Matsuzawa, S., Cuddy, M., Singh, S. K., Rao, G. S., Kondaiah, P. and Reed, J. C. (2011) Synthetic triterpenoid cyano enone of methyl boswellate activates intrinsic, extrinsic, and endoplasmic reticulum stress cell death pathways in tumor cell lines. Mol. Cancer Ther. 10, 1635-1643. https://doi.org/10.1158/1535-7163.MCT-10-0887
  16. Nagai, H., Noguchi, T., Takeda, K. and Ichijo, H. (2007) Pathophysiological roles of ASK1-MAP kinase signaling pathways. BMB Rep. 40, 1-6. https://doi.org/10.5483/BMBRep.2007.40.1.001
  17. Rogers, T. B., Inesi, G., Wade, R. and Lederer, W. J. (1995) Use of thapsigargin to study $Ca^{2+}$ homeostasis in cardiac cells. Biosci. Rep. 15, 341-349. https://doi.org/10.1007/BF01788366
  18. Sekine, Y., Takeda, K. and Ichijo, H. (2006) The ASK1- MAP kinase signaling in ER stress and neurodegenerative diseases. Curr. Mol. Med. 6, 87-97. https://doi.org/10.2174/156652406775574541
  19. Luo, S., Baumeister, P., Yang, S., Abcouwer, S. F. and Lee, A. S. (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J. Biol. Chem. 278, 37375-37385. https://doi.org/10.1074/jbc.M303619200
  20. Baumeister, P., Luo, S., Skarnes, W. C., Sui, G., Seto, E., Shi, Y. and Lee, A. S. (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol. Cell Biol. 25, 4529-4540. https://doi.org/10.1128/MCB.25.11.4529-4540.2005
  21. Borel, J. F. (2002) History of the discovery of cyclosporin and of its early pharmacological development. Wien. Klin. Wochenschr 114, 433-437.
  22. Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F. and Reed, J. C. (1999) $Ca^{2+}$-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339-343. https://doi.org/10.1126/science.284.5412.339
  23. Reed, J. C. and Kroemer, G. (2000) Mechanisms of mitochondrial membrane permeabilization. Cell Death Differ. 7, 1145. https://doi.org/10.1038/sj.cdd.4400777
  24. Yin, D., Tamaki, N., Kokunai, T., Yasuo, K. and Yonezawa, K. (1999) Bromocriptine-induced apoptosis in pituitary adenoma cells: relationship to p53 and bcl-2 expression. J. Clin. Neurosci. 6, 326-331. https://doi.org/10.1016/S0967-5868(99)90057-7
  25. Sambaziotis, D., Kapranos, N. and Kontogeorgos, G. (2003) Correlation of bcl-2 and bax with apoptosis in human pituitary adenomas. Pituitary 6, 127-133. https://doi.org/10.1023/B:PITU.0000011173.04191.37
  26. Muralikrishnan, D. and Mohanakumar, K. P. (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. The FASEB Journal: Official Publication of the FASEB J. 12, 905-912.
  27. Lim, J. H., Kim, K. M., Kim, S. W., Hwang, O. and Choi, H. J. (2008) Bromocriptine activates NQO1 via Nrf2- PI3K/Akt signaling: novel cytoprotective mechanism against oxidative damage. Pharmacol. Res. 57, 325-331. https://doi.org/10.1016/j.phrs.2008.03.004
  28. Lim, J. H., Kim, S. S., Boo, D. H., No, H., Kang, B. Y., Kim, E. M., Hwang, O. and Choi, H. J. (2009) Protective effect of bromocriptine against BH4-induced Cath. A cell death involving up-regulation of antioxidant enzymes. Neurosci. Lett. 451, 185-189. https://doi.org/10.1016/j.neulet.2008.12.056

Cited by

  1. Protein-Protein Interaction between Poly(A) Polymerase and Cyclophilin A in Chemotactic Cells vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.83
  2. Cytoprotective small molecule modulators of endoplasmic reticulum stress vol.24, pp.11, 2016, https://doi.org/10.1016/j.bmc.2016.03.045