• 제목/요약/키워드: Cell isolation

검색결과 1,079건 처리시간 0.017초

수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구 (Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle)

  • 이기연;김동욱;문현욱;김향곤
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

레이저 스크라이빙 공정을 이용한 실리콘 태양전지의 측면분리 효과 (Edge Isolation Effects on Silicon Solar Cells using a Laser Scribing Process)

  • 주재홍;정순원;김광호
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.851-856
    • /
    • 2017
  • Research on the edge isolation process of typical polycrystalline silicon solar cells was carried out using laser scribing equipment. The voltage-current characteristics of the solar cell before and after laser scribing were analyzed using a solar simulator. Current density and efficiency increased as the fill factor of the solar cell remained constant after the laser scribing process. The efficiency of the solar cell can be increased in a short time by the edge isolation process performed via a laser scribing process. The polycrystalline silicon solar cell was made into a series electrode, and the efficiency of the solar cell increased because the width of the solar cell was narrowed and the active region was widened by the laser scribing process.

Development of a High-Yield Isolation Protocol Optimized for the Retrieval of Active Muscle Satellite Cells from Mouse Skeletal Muscle Tissue

  • Hyun Lee;Na Rae Han;Seong Jae Kim;Jung Im Yun;Seung Tae Lee
    • International Journal of Stem Cells
    • /
    • 제15권3호
    • /
    • pp.283-290
    • /
    • 2022
  • Background and Objectives: Difficulties often encountered in separating and purifying active muscle satellite cells (MSCs) from skeletal muscle tissues have limited the supply of cells for muscle therapy and artificial meat production. Here, we report an effective isolation protocol to economically and conveniently retrieve active MSCs from skeletal muscle tissues in mice. Methods and Results: We optimized an enzyme-based tissue digestion protocol for isolating skeletal muscle-derived primary cell population having a large number of active MSCs and described a method of differential plating (DP) for improving purity of active MSCs from skeletal muscle-derived primary cell population. Then, the age of the mouse appropriate to the isolation of a large number of active MSCs was elucidated. The best isolation yield of active MSCs from mouse skeletal muscle tissues was induced by the application of DP method to the primary cell population harvested from skeletal muscle tissues of 2-week-old mice digested in 0.2% (w/v) collagenase type II for 30 min at 37℃ and then in 0.1% (w/v) pronase for 5 min at 37℃. Conclusions: The protocol we developed not only facilitates the isolation of MSCs but also maximizes the retrieval of active MSCs. Our expectation is that this protocol will contribute to the development of original technologies essential for muscle therapy and artificial meat industrialization in the future.

조혈모세포이식 병동에 관한 문화기술지: 환자를 중심으로 (Ethnography on Isolation Unit for Hematopoietic Stem Cell Transplantation: Focusing on Patients)

  • 강영아;이명선
    • 종양간호연구
    • /
    • 제9권1호
    • /
    • pp.31-42
    • /
    • 2009
  • Purpose: The purpose of the study was to understand how patients experience everyday life in an isolation unit for hematopoietic stem cell transplantation (HSCT). Method: The data were collected from 25 patients with HSCT at the isolation unit from January to March in 2008 in one general hospital in Korea. The data were collected by participant observations and ethnographic interviews and were analyzed using ethnographic method. Results: Four themes regarding environmental area emerged: 'barrier pulling up the drawbridge', 'very strange world', 'small and restricted space tied by IV and other treatment lines', and 'loud noise in a silent space.' Three themes regarding patients emerged: 'facing fear and anxiety', 'continuation of loneliness and lethargy', and 'compromising with a very long, dull, and boring time'. These themes describe how patients with HSCT suffer from continuous physical and psychosocial problems in a confined space, while endeavoring to control these problems and to search for hope for a new life. Conclusion: The results of the study provide an in-depth understanding of the experience and culture of patients in an isolation unit for HSCT. They would be used in developing practical programs to decrease patient's culture shock including fear and anxiety at isolation unit for HSCT.

  • PDF

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.

Dual-Polarized Small Base Station Antenna Integrated RF Module Applicable to Various Cell Environments for Next-Generation Mobile Communication Service

  • Lee, Jung-Nam;Lee, Yuro;Park, Bong-Hyuk;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.383-389
    • /
    • 2017
  • A small dual-polarized base station antenna with a simple isolation patch is presented. A high isolation is achieved when using a shorted metallic isolation patch. The experimental results indicate that the measured impedance bandwidth of the proposed antenna is 1.72 GHz to 1.89 GHz for small cell systems and that the isolation is more than 30 dB. The proposed antenna exhibits good radiation patterns with a peak gain of 8 dBi.

연료전지 자동차 세계기술규정의 감전보호기준 연구 (Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle)

  • 황보천;이규명;유경준
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

Protoplast Production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) Using Commercial Enzymes

  • Avila-Peltroche, Jose;Won, Boo Yeon
    • 한국해양바이오학회지
    • /
    • 제12권1호
    • /
    • pp.50-58
    • /
    • 2020
  • Sphacelaria is a filamentous brown algal genus that can be epibiotic on macroalgae, marine plants, and sea turtles. Its important role in benthic ecosystems, exposure to different stressors (e.g., grazing), and use as a model organism make Sphacelaria ideal for assessing physiological responses of organisms to environmental inputs. Single-cell RNA sequencing is a powerful new probe for understanding environmental responses of organisms at the molecular (transcriptome) level, capable of delineating gene regulation in different cell types. In the case of plants, this technique requires protoplasts ("naked" plant cells). The existing protoplast isolation protocols for Sphacelaria use non-commercial enzymes and are low-yielding. This study is the first to report the production of protoplasts from Sphacelaria fusca (Hudson) S.F. Gray, using a combination of commercial enzymes, chelation, and osmolarity treatment. A simple combination of commercial enzymes (cellulase Onozuka RS, alginate lyase, and driselase) with chelation pretreatment and an increased osmolarity (2512 mOsm/L H2O) gave a protoplast yield of 15.08 ± 5.31 × 104 protoplasts/g fresh weight, with all the Sphacelaria cell types represented. Driselase had no crucial effect on the protoplast isolation. However, the increased osmolarity had a highly significant and positive effect on the protoplast isolation, and chelation pretreatment was essential for optimal protoplast yield. The protocol represents a significant step forward for studies on Sphacelaria by efficiently generating protoplasts suitable for cellular studies, including single-cell RNA sequencing and expression profiling.

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Isolation and in vitro culture of primary cell populations derived from ovarian tissues of the rockfish, Sebastes schlegeli

  • Ryu, Jun Hyung;Kim, Hak Jun;Bae, Seung Seob;Jung, Choon Goo;Gong, Seung Pyo
    • Fisheries and Aquatic Sciences
    • /
    • 제19권2호
    • /
    • pp.9.1-9.7
    • /
    • 2016
  • This study was conducted to identify the general conditions for the isolation and in vitro culture of ovary-derived cells in rockfish (Sebastes schlegeli). The effects of three different enzymes on cell retrieval from ovarian tissues were evaluated first, and then the ovary-dissociated cells were cultured under various culture conditions, with varying basal media and culture temperatures, addition of growth factors, and/or culture types. We found that collagenase type I treatment was effective for cell isolation from ovarian tissues. From a total of 42 trials to evaluate the effects of basal media and culture temperatures on cell culture of ovary-dissociated cells, we observed that Leibovitz's L15 medium was more supportive than Dulbecco's modified Eagle's medium for culture, and the cells could grow at all three temperatures tested, 15, 20, and $25^{\circ}C$, at least up to passage 2. However, growth factor addition did not improve cell growth. Introduction of suspension culture after monolayer culture expanded the culture period significantly more than did monolayer culture alone. Our results may provide a basis for developing an in vitro system for S. schlegeli germline cell culture, which will ultimately lead to improvement of the species.