• Title/Summary/Keyword: Cell imbalance

Search Result 148, Processing Time 0.021 seconds

Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells

  • Kang, Ji In;Hong, Ji-Young;Choi, Jae Sue;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.320-327
    • /
    • 2016
  • Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to $25{\mu}M$) of CBN induced apoptosis, and high concentration ($50{\mu}M$) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.

Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression

  • Kim, Yong-Sam;Kim, Sun-Hee;Kang, Jeong-Gu;Ko, Jeong-Heon
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.623-628
    • /
    • 2012
  • Tissue inhibitor of metalloproteinases (TIMPs; TIMP-1, -2, -3 and -4) are endogenous inhibitor for matrix metalloproteinases (MMPs) that are responsible for remodeling the extracellular matrix (ECM) and involved in migration, invasion and metastasis of tumor cells. Unlike under normal conditions, the imbalance between MMPs and TIMPs is associated with various diseased states. Among TIMPs, TIMP-1, a 184-residue protein, is the only N-linked glycoprotein with glycosylation sites at N30 and N78. The structural analysis of the catalytic domain of human stromelysin-1 (MMP-3) and human TIMP-1 suggests new possibilities of the role of TIMP-1 glycan moieties as a tuner for the proteolytic activities by MMPs. Because the TIMP-1 glycosylation participate in the interaction, aberrant glycosylation of TIMP-1 presumably affects the interaction, thereby leading to pathogenic dysfunction in cancer cells. TIMP-1 has not only the cell proliferation activities but also anti-oncogenic properties. Cancer cells appear to utilize these bilateral aspects of TIMP-1 for cancer progression; an elevated TIMP-1 level exerts to cancer development via MMP-independent pathway during the early phase of tumor formation, whereas it is the aberrant glycosylation of TIMP-1 that overcome the high anti-proteolytic burden. The aberrant glycosylation of TIMP-1 can thus be used as staging and/or prognostic biomarker in colon cancer.

A Case of Secondary FSGS due to Chronic Chloride Diarrhea

  • Kim, Byung Kwan;Lee, Hyun Soon;Yim, Hyung Eun;Cheong, Hae Il;Yoo, Kee Hwan
    • Childhood Kidney Diseases
    • /
    • v.20 no.2
    • /
    • pp.83-87
    • /
    • 2016
  • Congenital chloride diarrhea (CLD) is a rare autosomal recessive disease that is difficult to diagnose. CLD requires early treatment to correct electrolyte imbalance and alkalosis and to prevent severe dehydration. Renal injury is clearly associated with defective electrolyte balance induced by CLD, particularly during the first months or years of life. A 7-year-old boy was diagnosed with CLD following detection of a homozygous mutation (c.2063-1G>T) in SLC26A3 at 6 months of age. During treatment with electrolyte supplements, mild proteinuria was detected at 8 months of age, and is still present. Renal biopsy showed the presence of focal renal dysplasia, with metaplastic cartilage and mononuclear cell infiltration, calcification, and fibrosis in the interstitium. Up to two-thirds of the glomeruli exhibited global obsolescence, mostly aggregated in the dysplastic area. In nondysplastic areas, the glomeruli were markedly increased in size and severely hypercellular, with increased mesangial matrix, and displayed segmental sclerosis. The marked glomerular hypertrophy with focal segmental glomerulosclerosis suggested a compensatory reaction to the severe nephron loss or glomerular obsolescence associated with renal dysplasia, with superimposed by CLD aggravating the tubulointerstitial damage.

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Effects of Asparagus cochinchinensis (Lour.) Merr. on the Stimulation of Osteoblast Differentiation and Inhibition of Osteoclast Generation (천문동 추출물에 의한 조골세포 분화 촉진 및 파골세포 생성 억제효과)

  • Lee, Seung-Youn;Kim, Si-Na;Kim, Jong-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.16-19
    • /
    • 2008
  • Bone mass in adults decreases with age because of the imbalance between the rate of bone formation and resorption. We performed this study to investigate whether Asparagus cochinchinensis (Lour.) Merr. (ACAE) plays a role in osteoblasts differentiation and osteoclasts formation. Ethanol extract of ACAE showed increase in the differentiation and alkaline phosphatase activity of osteoblasts. Also, it decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (OCLs) and TRAP activity. Therefore, ACAE has the potential to prevent bone-related diseases such as osteoporosis by increasing the differentiation of osteoblasts and reducing both the number and activity of osteoclasts.

Enhanced Lycopene Production by UV-C Irradiation in Radiation-Resistant Deinococcus radiodurans R1

  • Kang, Chang Keun;Yang, Jung Eun;Park, Hae Woong;Choi, Yong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1937-1943
    • /
    • 2020
  • Although classical metabolic engineering strategies have succeeded in developing microbial strains capable of producing desired bioproducts, metabolic imbalance resulting from extensive genetic manipulation often leads to decreased productivity. Thus, abiotic strategies for improving microbial production performance can be an alternative to overcome drawbacks arising from intensive metabolic engineering. Herein, we report a promising abiotic method for enhancing lycopene production by UV-C irradiation using a radiation-resistant ΔcrtLm/crtB+dxs+ Deinococcus radiodurans R1 strain. First, the onset of UV irradiation was determined through analysis of the expression of 11 genes mainly involved in the carotenoid biosynthetic pathway in the ΔcrtLm/crtB+dxs+ D. radiodurans R1 strain. Second, the effects of different UV wavelengths (UV-A, UV-B, and UV-C) on lycopene production were investigated. UV-C irradiation induced the highest production, resulting in a 69.9% increase in lycopene content [64.2 ± 3.2 mg/g dry cell weight (DCW)]. Extended UV-C irradiation further enhanced lycopene content up to 73.9 ± 2.3 mg/g DCW, a 95.5% increase compared to production without UV-C irradiation (37.8 ± 0.7 mg/g DCW).

A Novel DPP Converter Integrating Converters for Multiple Photovoltaic Submodules (다수의 Photovoltaic Submodule용 컨버터를 통합한 DPP 컨버터)

  • Lim, Ji-Hoon;Lee, Dong-In;Hyeon, Ye-Ji;Choi, Jae-Hyuk;Youn, Han-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Recently, photovoltaic (PV) systems have been gradually applied in eco-friendly vehicle applications to improve fuel economy. The relevant market is expected to continue to grow because the installation of large-capacity PV systems to other eco-friendly vehicles, such as electric buses and trains, is being considered. However, in a PV system, power imbalance between submodules and low power generation efficiency occur due to factors such as cell aging, contamination, and shading. To resolve this problem, various differential power processing (DPP) converters have been researched and developed. However, conventional DPP converters suffer from large volume and low efficiency. Therefore, to apply DPP converters to eco-friendly vehicles, increasing efficiency and reducing volume and price compared with existing DPP converters is necessary. In this paper, a novel DPP converter with an integrated transformer is proposed and analyzed. The proposed DPP converter uses a single magnetic component by integrating transformers and secondary sides of conventional DPP converters. Therefore, the proposed DPP converter shows high power density and high efficiency, and it is suitable for PV systems in eco-friendly vehicle applications.

Antioxidants as alleviating agents of in-vitro embryo production oxidative stress

  • Areeg Almubarak;Il-Jeoung Yu;Yubyeol Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.47-53
    • /
    • 2023
  • Despite numerous advances in in-vitro embryo production (IVP), many documented factors have been shown to influence the development of mammalian preimplantation embryos and the success of IVP. In this sense, elevated levels of reactive oxygen species (ROS) correlate with poor outcomes in assisted reproductive technologies (ART) due to oxidative stress (OS), which results from an imbalance between ROS production and neutralization. Indeed, excessive production of ROS compromises the structural and functional integrity of gametes and embryos both in vivo and in vitro. In particular, OS damages proteins, lipids, and DNA and accelerates cell apoptosis. Several in-vivo and in-vitro studies report an improvement in qualityrelevant parameters after the use of various antioxidants. In this review, we focus on OS and the source of free radicals and their effects on oocytes, sperm, and the embryo during IVP. In addition, antioxidants and their important role in IVP, supplementation during oocyte in vitro maturation (IVM), in vitro culture (IVC), and semen extenders were discussed. Nevertheless, various methods for determining the level of ROS in germ cells have been briefly described. Still, it is crucial to develop standardized antioxidant supplement systems to improve overall IVP success. Further studies should explore the safety, efficacy, mechanism of action, and combination of different antioxidants to improve IVP outcomes.

Effect of Baekhasuoyijung-Tang on Mouse T Cell Cytokines (백하수오이중탕물 추출물이 생쥐 면역세포의 시토킨 조절에 미치는 효과)

  • Kim, Tae-Gyun;Park, Sung-Min;Kang, Hee;Shim, Bum-Sang;Kim, Sung-Hoon;Choi, Seung-Hoon;Ahn, Kyoo-Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.754-761
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of Baekhasuoyijung-Tang(BHSYJT)on mouse T cell cytokines. The proliferation of mouse CD4 T cells under the influence of BHSYJT extract was measured. When mouse CD4 T cell were stimulated with anti-CD3 and anti-CD28 in various concentrations of BHSYJT extract, it increased proliferation of CD4 cells by 28% in $10{\mu}g/m{\ell}$ concentration and by 32% in $100{\mu}g/m{\ell}$ concentration. Treatment of CD4+ T cells stimulated by anti-CD3e and anti-CD28 with BHSYJT resulted in reduction of $IFN-{\gamma}$,but IL-4 levels is not changed. Oral administration of BHSYJT resulted in increase of both CD4+ and CD8+ T cell population in Balb/c mice by 11%. Oral administration of BHSYJT resulted in reduction of serum $IFN-{\gamma}$ level by 27% but, IL-4 level is not changed. CD4+ T cells under Th1/Th2 polarizing conditions for 3 days with BHSYJT resulted in decrease of $IFN-{\gamma}$ level in TH1 cells. Experimental results of this study show that BHSYJT helps to reduce secretion of $IFN-{\gamma}$ by mouse T helper cell in vitro and it had the same effect in vivo. Thus, it can be concluded that use of BHSYJT is an effective treatment for correcting immune imbalance in immune disorders and autoimmune diseases by reducing secretion of cytokine by Th1 cells.

Short-Term High Expression of Interferon-Alpha Modulates Progression of Type 1 Diabetes in NOD Mice

  • Park, Mi-Kyoung;Seo, Su-Yeong;Hong, Sook-Hee;Kim, Hye-Jin;Park, Eun-Jin;Kim, Duk-Kyu;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Type I diabetes (T1D) is an organ-specific autoimmune disease caused by the T cell-mediated destruction of the insulin-producing ${\beta}$ cells in the pancreatic islets. The onset of T1D is the consequence of a progressive destruction of islet ${\beta}$ cells mediated by an imbalance between effector $CD4^+$ T helper (Th)1 and regulatory $CD4^+$ Th2 cell function. Since interferon-alpha (IFN-${\alpha}$) has been known to modulate immune function and autoimmunity, we investigated whether administration of adenoviralmediated IFN-${\alpha}$ gene would inhibit the diabetic process in NOD mice. The development of diabetes was significantly inhibited by a single injection of adenoviral-mediated IFN-${\alpha}$ gene before 8 weeks of age. Next, we examined the hypothesis that Th2-type cytokines are associated with host protection against autoimmune diabetes, whereas Th1-type cytokines are associated with pathogenesis of T1D. The expression of IFN-${\alpha}$ induced increase of serum IL-4 and IL-6 (Th2 cytokines) levels and decrease of serum IL-12 and IFN-${\gamma}$ (Th1 cytokines) levels. Therefore, overexpression of IFN-${\alpha}$ by adenoviralmediated delivery provides modulation of pathogenic progression and protection of NOD mice from T1D.