Short-Term High Expression of Interferon-Alpha Modulates Progression of Type 1 Diabetes in NOD Mice

  • Park, Mi-Kyoung (Departments of Internal Medicine, Dong-A University College of Medicine) ;
  • Seo, Su-Yeong (Departments of Microbiology, Dong-A University College of Medicine) ;
  • Hong, Sook-Hee (Departments of Pathology, Dong-A University College of Medicine) ;
  • Kim, Hye-Jin (Departments of Pharmacology, Dong-A University College of Medicine) ;
  • Park, Eun-Jin (Departments of Pharmacology, Dong-A University College of Medicine) ;
  • Kim, Duk-Kyu (Departments of Internal Medicine, Dong-A University College of Medicine) ;
  • Lee, Hye-Jeong (Departments of Pharmacology, Dong-A University College of Medicine)
  • Published : 2006.02.21

Abstract

Type I diabetes (T1D) is an organ-specific autoimmune disease caused by the T cell-mediated destruction of the insulin-producing ${\beta}$ cells in the pancreatic islets. The onset of T1D is the consequence of a progressive destruction of islet ${\beta}$ cells mediated by an imbalance between effector $CD4^+$ T helper (Th)1 and regulatory $CD4^+$ Th2 cell function. Since interferon-alpha (IFN-${\alpha}$) has been known to modulate immune function and autoimmunity, we investigated whether administration of adenoviralmediated IFN-${\alpha}$ gene would inhibit the diabetic process in NOD mice. The development of diabetes was significantly inhibited by a single injection of adenoviral-mediated IFN-${\alpha}$ gene before 8 weeks of age. Next, we examined the hypothesis that Th2-type cytokines are associated with host protection against autoimmune diabetes, whereas Th1-type cytokines are associated with pathogenesis of T1D. The expression of IFN-${\alpha}$ induced increase of serum IL-4 and IL-6 (Th2 cytokines) levels and decrease of serum IL-12 and IFN-${\gamma}$ (Th1 cytokines) levels. Therefore, overexpression of IFN-${\alpha}$ by adenoviralmediated delivery provides modulation of pathogenic progression and protection of NOD mice from T1D.

Keywords

References

  1. Atkinson MA, MacLaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331: 1428-1436, 1994 https://doi.org/10.1056/NEJM199411243312107
  2. Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15: 516-542, 1994 https://doi.org/10.1210/edrv-15-4-516
  3. Brod SA, Malone M, Darcan S, Papolla M, Nelson L. Ingested interferon-alpha suppresses type I diabetes in non-obese diabetic mice. Diabetologia 41: 1227-1232, 1998 https://doi.org/10.1007/s001250051056
  4. Cameron MJ, Arreaza GA, Zucker P, Chensue SW, Strieter RM, Chakrabarti S, Delovitch TL. IL-4 prevents insulitis and insulindependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol 159: 4686-4692, 1997
  5. Daniel D, Gill RG, Schloot N, Wegmann D. Epitope specificity, cytokine production profile and diabetogenic activity of insulinspecific T cell clones isolated from NOD mice. Eur J Immunol 25: 1056-1062, 1995 https://doi.org/10.1002/eji.1830250430
  6. Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7: 727-738, 1997 https://doi.org/10.1016/S1074-7613(00)80392-1
  7. Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, Pathak R, Raper SE, Wilson JM. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3: 306-312, 1997 https://doi.org/10.1038/nm0397-306
  8. Gallichan WS, Balasa B, Davies JD, Sarvetnick N. Pancreatic IL-4 Expression results in Islet-Reactive Th2 cells that inhibit diabetogenic lymphocytes in the nonobese diabetic mouse. J Immunol 163: 1696-1703,1999
  9. Giannoukakis N, Rudert WA, Robbins PD, Trucco M. Targeting autoimmune diabetes with gene therapy. Diabetes 48: 2107- 2121, 1999 https://doi.org/10.2337/diabetes.48.11.2107
  10. Graham FL, Prevec L. Manipulation of adenovirus vectors. In: Murray EJ, Walker JM eds, Methods in Molecular Biology. Gene Transfer and Expression Protocols. Humana Press: Clifton, NJ, p 109-127 1991
  11. Heurtier AH, Boitard C. T-cell regulation in murine and human autoimmune diabetes: the role of TH1 and TH2 cells. Diabetes Metab 23: 377-385, 1997
  12. Hogaboam CM, Vallance BA, Kumar A, Addison CL, Graham FL, Gauldie J, Collins SM. Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease. J Clin Invest 100: 2766-2776, 1997 https://doi.org/10.1172/JCI119823
  13. McGrory WJ, Bautista DS, Graham FL. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163: 614-617, 1988 https://doi.org/10.1016/0042-6822(88)90302-9
  14. Mueller R, Krahl T, Sarvetnick N. Pancreatic expression of interleukin- 4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 184: 1093-1099, 1996 https://doi.org/10.1084/jem.184.3.1093
  15. Mueller R, Bradley LM, Krahl T, Sarvetnick N. Mechanism underlying counterregulation of autoimmune diabetes by IL-4. Immunity 7: 411-418, 1997 https://doi.org/10.1016/S1074-7613(00)80362-3
  16. Pakala SV, Kurrer MO, Katz JD. T helper 2 (Th2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice. J Exp Med 186: 299-306, 1997 https://doi.org/10.1084/jem.186.2.299
  17. Parks E, Strieter RM, Lukacs NW, Gauldie J, Hitt M, Graham FL, Kunkel SL. Transient gene transfer of IL-12 regulates chemokine expression and disease severity in experimental arthritis. J Immunol 160: 4615-5619, 1998
  18. Parks R, Evelegh C, Graham F. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Therapy 6: 1565-1573, 1999 https://doi.org/10.1038/sj.gt.3300995
  19. Pilstrom B, Bjork L, Bohme J. Demonstration of a Th1 cytokine profile in the late phase of NOD insulitis. Cytokine 7: 806-814, 1995 https://doi.org/10.1006/cyto.1995.0097
  20. Rabinovitch A, Suarez-Pinzon WL, Sorensen O, Bleackley RC, Power RF. IFN-${\gamma}$ gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice. J Immunol 154: 5874-4882, 1995
  21. Rabinovitch A, Suarez-Pinzon W, El-Sheikh A, Sorensen O, Power RF. Cytokine gene expression in pancreatic islet-infiltrating leukocytes of BB rats: expression of Th1 cytokines correlates with $\beta$-cell destructive insulitis and IDDM. Diabetes 45: 749- 754, 1996 https://doi.org/10.2337/diabetes.45.6.749
  22. Shimada A, Rohane P, Fathman CG, Charlton B. Pathogenic and protective roles of $CD45RB^{low}$ $CD4^+$ cells correlate with cytokine profile in the spontaneously autoimmune diabetic mouse. Diabetes 45: 71-78, 1996 https://doi.org/10.2337/diabetes.45.1.71
  23. Sobel DO, Ahvazi B. Alpha-interferon inhibits the development of diabetes in NOD mice. Diabetes 47: 1867-1872, 1998 https://doi.org/10.2337/diabetes.47.12.1867
  24. Swain SL. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1: 543-552, 1994 https://doi.org/10.1016/1074-7613(94)90044-2
  25. Teng B, Blumenthal S, Forte T, Navaratnam N, Scott J, Gotto AM, Chan L. Adenovirus-mediated gene transfer of rat apolipoprotein B mRNA-editing protein in mice virtually eliminates apolipoprotein B-100 and normal low density lipoprotein production. J Biol Chem 269: 29359-29404, 1994