• Title/Summary/Keyword: Cell imaging

Search Result 875, Processing Time 0.027 seconds

Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging

  • Wu, Szu-Hsien (Sam);Lee, Ji-Hyun;Koo, Bon-Kyoung
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.104-112
    • /
    • 2019
  • Tracking the fate of individual cells and their progeny through lineage tracing has been widely used to investigate various biological processes including embryonic development, homeostatic tissue turnover, and stem cell function in regeneration and disease. Conventional lineage tracing involves the marking of cells either with dyes or nucleoside analogues or genetic marking with fluorescent and/or colorimetric protein reporters. Both are imaging-based approaches that have played a crucial role in the field of developmental biology as well as adult stem cell biology. However, imaging-based lineage tracing approaches are limited by their scalability and the lack of molecular information underlying fate transitions. Recently, computational biology approaches have been combined with diverse tracing methods to overcome these limitations and so provide high-order scalability and a wealth of molecular information. In this review, we will introduce such novel computational methods, starting from single-cell RNA sequencing-based lineage analysis to DNA barcoding or genetic scar analysis. These novel approaches are complementary to conventional imaging-based approaches and enable us to study the lineage relationships of numerous cell types during vertebrate, and in particular human, development and disease.

Primary Diffuse Large B-Cell Lymphoma of the Seminal Vesicle: a Case Report

  • Kwag, Kyung Su;Jang, Suk Ki;Yeon, Jae Woo;Kwon, Kye-Won;Son, Jeong Hwan;Kim, Hyuk Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.259-263
    • /
    • 2016
  • Primary diffuse large B-cell lymphoma of the seminal vesicle is an extremely rare disorder, with only two cases reported in the English literature. Here, we present imaging findings of a case of primary diffuse large B-cell lymphoma of the seminal vesicle. On transrectal ultrasonography, the mass presented as a 3.0-cm-sized heterogeneous, hypoechoic lesion in the right seminal vesicle. Computed tomography (CT) revealed a mass with rim-like enhancement in the right seminal vesicle. On magnetic resonance imaging (MRI), the tumor showed iso-signal intensity on T1-weighted images and heterogeneously intermediate-high signal intensity on T2-weighted images. The tumor showed rim-like and progressive enhancement with non-enhancing portion on dynamic scanning. Diffusion restriction was observed in the mass. On fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) imaging, a high standardized uptake value (maxSUV, 23.5) by the tumor was noted exclusively in the right seminal vesicle.

Combined Hepatocellular-Cholangiocarcinoma: Changes in the 2019 World Health Organization Histological Classification System and Potential Impact on Imaging-Based Diagnosis

  • Tae-Hyung Kim;Haeryoung Kim;Ijin Joo;Jeong Min Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1115-1125
    • /
    • 2020
  • Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a primary liver cancer (PLC) with both hepatocytic and cholangiocytic phenotypes. Recently, the World Health Organization (WHO) updated its histological classification system for cHCC-CCA. Compared to the previous WHO histological classification system, the new version no longer recognizes subtypes of cHCC-CCA with stem cell features. Furthermore, some of these cHCC-CCA subtypes with stem cell features have been recategorized as either hepatocellular carcinomas (HCCs) or intrahepatic cholangiocarcinomas (ICCs). Additionally, distinctive diagnostic terms for intermediate cell carcinomas and cholangiolocarcinomas (previous cholangiolocellular carcinoma subtype) are now recommended. It is important for radiologists to understand these changes because of its potential impact on the imaging-based diagnosis of HCC, particularly because cHCC-CCAs frequently manifest as HCC mimickers, ICC mimickers, or as indeterminate on imaging studies. Therefore, in this review, we introduce the 2019 WHO classification system for cHCC-CCA, illustrate important imaging features characteristic of its subtypes, discuss the impact on imaging-based diagnosis of HCC, and address other important considerations.

Imaging Single-mRNA Localization and Translation in Live Neurons

  • Lee, Byung Hun;Bae, Seong-Woo;Shim, Jaeyoun Jay;Park, Sung Young;Park, Hye Yoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.841-846
    • /
    • 2016
  • Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.

Clinical Application of $^{18}F-FDG$ PET in Nonmelanomatous Skin Cancer (비흑색종 피부암에서 $^{18}F-FDG$ PET의 임상 이용)

  • Yoon, Joon-Kee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.149-152
    • /
    • 2008
  • Nonmelanomatous skin cancer includes basal cell carcinoma, squamous cell carcinoma, merkel cell carcinoma and dermatofibrosarcoma protuberance. So far, there have been a few reports that $^{18}F-FDG$ PET was useful in the evaluation of metastasis and therapeutic response in nonmelanomatous skin cancer, however, those are very weak evidences. Therefore, further studies on the usefulness of $^{18}F-FDG$ PET in nonmelanomatous skin cancer are required.

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

Study on the Elastic Characteristics of Living Cells using Atomic Force Microscope Indentation Technique

  • Kwon Eun-Young;Kim Young-Tae;Kim Dae-Eun
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.10-13
    • /
    • 2006
  • In this work, imaging and study of elastic property of the living cell was performed. The motivation of this work was to seek the possibility of exploiting Young's modulus as a disease indicator using Atomic Force Microscope (AFM) and also to gain fundamental understanding of cell mechanics for applications in medical nanorobots of the future. L-929 fibroblast adherent cell was used as the sample. Imaging condition in cell culturing media environment was done in very low speed ($20{\mu}m/ s$) compared to that in the ambient environment. For measuring the Young's modulus of the living cell, AFM indentation method was used. From the force-distance curve obtained from the indentation experiment the Young's modulus could be derived using the Hertz model. The Young's modulus of living L-929 fibroblast cell was $1.29{\pm}0.2$ kPa.

Time-Lapse Live-Cell Imaging Reveals Dual Function of Oseg4, Drosophila WDR35, in Ciliary Protein Trafficking

  • Lee, Nayoung;Park, Jina;Bae, Yong Chul;Lee, Jung Ho;Kim, Chul Hoon;Moon, Seok Jun
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.676-683
    • /
    • 2018
  • Cilia are highly specialized antennae-like organelles that extend from the cell surface and act as cell signaling hubs. Intraflagellar transport (IFT) is a specialized form of intracellular protein trafficking that is required for the assembly and maintenance of cilia. Because cilia are so important, mutations in several IFT components lead to human disease. Thus, clarifying the molecular functions of the IFT proteins is a high priority in cilia biology. Live imaging in various species and cellular preparations has proven to be an important technique in both the discovery of IFT and the mechanisms by which it functions. Live imaging of Drosophila cilia, however, has not yet been reported. Here, we have visualized the movement of IFT in Drosophila cilia using time-lapse live imaging for the first time. We found that NOMPB-GFP (IFT88) moves according to distinct parameters depending on the ciliary segment. NOMPB-GFP moves at a similar speed in proximal and distal cilia toward the tip (${\sim}0.45{\mu}m/s$). As it returns to the ciliary base, however, NOMPB-GFP moves at ${\sim}0.12{\mu}m/s$ in distal cilia, accelerating to ${\sim}0.70{\mu}m/s$ in proximal cilia. Furthermore, while live imaging NOMPB-GFP, we observed one of the IFT proteins required for retrograde movement, Oseg4 (WDR35), is also required for anterograde movement in distal cilia. We anticipate our time-lapse live imaging analysis technique in Drosophila cilia will be a good starting point for a more sophisticated analysis of IFT and its molecular mechanisms.

Key Imaging Findings for the Prospective Diagnosis of Rare Diseases of the Gallbladder and Cystic Duct

  • Shintaro Ichikawa;Naoki Oishi;Tetsuo Kondo;Hiroshi Onishi
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1462-1474
    • /
    • 2021
  • There are various diseases of the gallbladder and cystic duct, and imaging diagnosis is challenging for the rare among them. However, some rare diseases show characteristic imaging findings or patient history; therefore, familiarity with the imaging presentation of rare diseases may improve diagnostic accuracy and patient management. The purpose of this article is to describe the imaging findings of rare diseases of the gallbladder and cystic duct and identify their pathological correlations with these diseases.