• 제목/요약/키워드: Cell cycle modulation

검색결과 61건 처리시간 0.026초

Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin

  • Hussain, Arif;Sharma, Chhavi;Khan, Saniyah;Shah, Kruti;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2939-2946
    • /
    • 2015
  • Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina;Park, Gyu Hwan;Joo, Sang Hoon;Shim, Jung-Hyun;Choi, Joon-Seok
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.585-592
    • /
    • 2022
  • Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells

  • Putri, Herwandhani;Jenie, Riris Istighfari;Handayani, Sri;Kastian, Ria Fajarwati;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2683-2688
    • /
    • 2016
  • A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV-0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with $IC_{50}$ values of $94.9{\mu}M$ and $49.0{\pm}0.2{\mu}M$, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent.

Protein Kinase Modulates the $GABA_c$ Currents in Cone-horizontal Cell Axon-terminals Isolated from Catfish Retina

  • Paik, Sun-Sook;Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.54-54
    • /
    • 1999
  • Protein kinase modulation of gamma-aminobutyric acid C (GABA$_{c}$) currents in freshly dissociated catfish retinal cone-horizontal cell axon-terminals was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA were monitored in intracellular application of adenosin 3',5'-cycle monophophate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, and their inhibitors or inactive analogues.(omitted)d)

  • PDF

Regulation of post-translational modification in breast cancer treatment

  • Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.113-118
    • /
    • 2019
  • The small ubiquitin-related modification molecule (SUMO), one of the post-translational modification molecules, is involved in a variety of cellular functions where it regulates protein activity and stability, transcription, and cell cycling. Modulation of protein SUMOylation or deSUMOylation modification has been associated with regulation of carcinogenesis in breast cancer. In the dynamic processes of SUMOylation and deSUMOylation in a variety of cancers, SUMO proteases (SENPs), reverse SUMOylation by isopeptidase activity and SENPs are mostly elevated, and are related to poor patient prognosis. Although underlying mechanisms have been suggested for how SENPs participate in breast cancer tumorigenesis, such as through regulation of target protein transactivation, cancer cell survival, cell cycle, or other post-translational modification-related machinery recruitment, the effect of SENP isoform-specific inhibitors on the progression of breast cancer have not been well evaluated. This review will introduce the functions of SENP1 and SENP2 and the underlying signaling pathways in breast cancer for use in discovery of new biomarkers for diagnosis or therapeutic targets for treatment.

Listeria monocytogenes에 의해 HL-60 cell의 세포고사 유도 효과 규명 (Extract of Listeria monocytogenes Induces the Apoptosis on the Human Promyelocytic Leukemia Cells, HL-60 Cells)

  • 양은주;김동현;장정현
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.339-348
    • /
    • 2012
  • 급성 전골수구성 백혈병(acute promyelocytic leukemia, APL)은 치료제가 한정적이고 그 또한 다양한 부작용을 초래한다. 최근 암세포 형성 억제에 세균 추출물을 사용하는 경우가 증가하는데 이를 이용하여 기존의 약제보다 효과적이면서 부작용이 적은 치료제 개발이 필요하다. 본 연구에서는 L. monocytogenes에서 분비되는 물질(LmSup)과 세균 자체가 함유하고 있는 물질(LmE)을 추출하여 HL-60 세포에 처리한 다음 세포증식 억제 효과를 보고자 하였다. 세포 생존율 및 세포고사를 확인하여 세포를 죽음으로 유도하는 지 파악한 다음 작용기전을 규명하고자 세포주기의 변화 및 ROS 생성을 관찰하였다. 그 결과, LmSup와 LmE가 급성 전골수구성 백혈병(APL) 세포인 HL-60의 세포고사를 유도하고, sub G0/G1기 증가로 세포주기를 비정상적으로 차단함으로써 세포고사를 유도함을 확인하였다. 이때, ROS가 관여함을 관찰하였다. 이를 통해, LmSup 또는 LmE의 구체적인 항암효과 및 기전 분석을 통해 난치병인 APL의 치료 방법 및 치료제 개발에 기여하고자 한다.

Reduction of Proliferation and Induction of Apoptosis are Associated with Shrinkage of Head and Neck Squamous Cell Carcinoma due to Neoadjuvant Chemotherapy

  • Sarkar, Shreya;Maiti, Guru Prasad;Jha, Jayesh;Biswas, Jaydip;Roy, Anup;Roychoudhury, Susanta;Sharp, Tyson;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6419-6425
    • /
    • 2013
  • Background: Neoadjuvant chemotherapy (NACT) is a treatment modality whereby chemotherapy is used as the initial treatment of HNSCC in patients presenting with advanced cancer that cannot be treated by other means. It leads to shrinkage of tumours to an operable size without significant compromise to essential oro-facial organs of the patients. The molecular mechanisms behind shrinkage due to NACT is not well elucidated. Materials and Methods: Eleven pairs of primary HNSCCs and adjacent normal epithelium, before and after chemotherapy were screened for cell proliferation and apoptosis. This was followed by immunohistochemical analysis of some cell cycle (LIMD1, RBSP3, CDC25A, CCND1, cMYC, RB, pRB), DNA repair (MLH1, p53) and apoptosis (BAX, BCL2) associated proteins in the same set of samples. Results: Significant decrease in proliferation index and increase in apoptotic index was observed in post-therapy tumors compared to pre-therapy. Increase in the RB/pRB ratio, along with higher expression of RBSP3 and LIMD1 and lower expression of cMYC were observed in post-therapy tumours, while CCND1 and CDC25A remained unchanged. While MLH1 remained unchanged, p53 showed higher expression in post-therapy tumors, indicating inhibition of cell proliferation and induction of apoptosis. Increase in the BAX/BCL2 ratio was observed in post-therapy tumours, indicating up-regulation of apoptosis in response to therapy. Conclusions: Thus, modulation of the G1/S cell cycle regulatory proteins and apoptosis associated proteins might play an important role in tumour shrinkage due to NACT.

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Modulation of Autophagy is a Potential Strategy for Enhancing the Anti-Tumor Effect of Mebendazole in Glioblastoma Cells

  • Jo, Seong Bin;Sung, So Jung;Choi, Hong Seok;Park, Jae-Sung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.616-624
    • /
    • 2022
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.