• Title/Summary/Keyword: Cell Thickness

Search Result 1,408, Processing Time 0.035 seconds

Measurement of Bow in Silicon Solar Cell Using 3D Image Scanner (3D 스캔을 이용한 실리콘 태양전지의 휨 현상 측정 연구)

  • Yoon, Phil Young;Baek, Tae Hyeon;Song, Hee Eun;Chung, Haseung;Shin, Seungwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.823-828
    • /
    • 2013
  • To reduce the cost per watt of photovoltaic power, it is important to reduce the cell thickness of crystalline silicon solar cells. As the thickness of the silicon layer is reduced, two distinctive thermal expansion rates between the silicon and the aluminum layer induce bowing in a solar cell. With a thinner silicon layer, the bowing distance grows exponentially. Excessive bowing could damage the silicon wafer. In this study, we tried to measure an irregularly curved silicon solar cell more accurately using a 3D image scanner. For the detailed analysis of the three-dimensional bowing shape, a least square fit was applied to the point data from the scanned image. It has been found that the bowing distance and shape distortion increase with a decrease in the thickness of the silicon layer. An Ag strip on top of the silicon layer can reduce the bowing distance.

Chemical Mechanical Polishing Characteristics of CdTe Thin Films for Application to Large-area Thin Film Solar Cell (대면적 박막 태양전지 적용을 위한 CdTe 박막의 화학적기계적연마 공정 특성)

  • Yang, Jung-Tae;Shin, Sang-Hun;Lee, Woo-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1146-1150
    • /
    • 2009
  • Cadmium telluride (CdTe) is one of the most attractive photovoltaic materials due to its low cost, high efficiency and stable performance in physical, optical and electronic properties. Few researches on the influences of uniform surface on the photovoltaic characteristics in large-area CdTe solar cell were not reported. As the preceding study of the effects of thickness-uniformity on the photovoltaic characteristics for the large-area CdTe thin film solar cell, chemical mechanical polishing (CMP) process was investigated for an enhancement of thickness-uniformity. Removal rate of CdTe thin film was 3160 nm/min of the maximum value at the 200 $gf/cm^2$ of down force (pressure) and 60 rpm of table speed (velocity). The removal rate of CdTe thin film was more affected by the down force than the table speed which is the two main factors directly influencing on the removal rate in CMP process. RMS roughness and peak-to-valley roughness of CdTe thin film after CMP process were improved to 96.68% and 85.55%, respectively. The optimum process condition was estimated by 100 $gf/cm^2$ of down force and 60 rpm of table speed with the consideration of good removal uniformity about 5.0% as well as excellent surface roughness for the large-area CdTe solar cell.

Surface Coating and Corrosion Characteristics of Bipolar Plates of PEMFC Application (PEMFC용 분리판 표면코팅 및 부식성 평가)

  • Kang, Kyung-Min;Kim, Dong-Mook;Choi, Jeong-Sik;Cha, In-Soo;Yun, Young-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1 um) and gold film (1-2 um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed micro structure of grains of about 100 nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

The observation of solar cell's micro-crack depending on EVA Sheet's lamination condition for photovoltaic module (PV 모듈용 EVA Sheet의 Lamination 공정 조건에 따른 태양전지 크랙발생 현상 관찰)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Huh, Chang-Su;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.9-9
    • /
    • 2008
  • Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Properties on Electrical Resistance Change of Ag-doped Chalcogenide Thin Films Application for Programmable Metallization Cell (Programmable Metallization Cell 응용을 위한 Ag-doped 칼코게나이드 박막의 전기적 저항 변화 특성)

  • Choi, Hyuk;Koo, Sang-Mo;Cho, Won-Ju;Lee, Young-Hie;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1022-1026
    • /
    • 2007
  • We have demonstrated new functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of silver via photo-induced diffusion in thin chalcogenide films is considered. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Silver saturated chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in programmable metallization cell (PMC) devices. In this paper, we investigated electrical and optical properties of Ag-doped chalcogenide thin film on changed thickness of Ag and chalcogenide thin films, which is concerned at Ag-doping effect of PMC cell. As a result, when thickness of Ag and chalcogenide thin film was 30 nm and 50 nm respectively, device have excellent characteristics.

Effect of SiO2 Antireflection Coating on the Si Solar Cell (Si 태양전지에서 SiO2 광반사 방지막의 처리 효과)

  • Chang Gee-Keun;Lim Yong-Keu;Hwang Yong-Woon;Cho Jae-Uk
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.152-156
    • /
    • 2004
  • We have studied the effective optical absorption power of Si solar cell with $SiO_2$-antireflection layer based on a mathematical modelling of AM(air mass)1 spectrum and Si refractive index in the wavelength range(0.4 $\mu\textrm{m}\leq$λ$\leq$$0.97\mu\textrm{m}$). The effective optical absorption power obtained from the theoretical calculation was 450 and 520 W/$\m^2$ for the Si solar cells with $SiO_2$-antireflection layer of 500$\AA$ and 1000$\AA$, respectively. The optimum thickness of $SiO_2$-antireflection layer showing the minimum reflection loss was about 1000$\AA$ in the computer simulation. Two kinds of Si solar cells named EBS(500$\AA$) and EBS(l000$\AA$) were fabricated to evaluate the effect of $SiO_2$-antireflection layer thickness on the optical absorption. The epitaxial base Si cell with $SiO_2$-antireflection layer of 1000$\AA$ [EBS(l000$\AA$)] showed the output power improvement of about 15% upon the EBS(500$\AA$) cell due to larger absorption of effective optical power under illumination of AM1, 1 sun.

A study on the Molding Stability of Hydro-mechanical High Speed Injection Molding for Thin-Walled(0.3mm) LGP (초박형(0.3t) 도광판 적용을 위한 유압식 고속사출성형의 성형 안정성 연구)

  • Kim, J.S.;Oh, J.G.;Jeong, C.;An, H.J.;Hwang, C.J.;Kim, J.D.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.422-425
    • /
    • 2008
  • Recently, electronic products and related parts are required to have thin thickness because of small form factor. To go with the trend, LGP(light guide plate) of LCD BLU(Liquid Crystal Display Back light unit: It is one of kernel parts of LCD) for cell phone has the thickness of 0.3 mm and the battery case of cell phone has 0.25 mm. Accordingly, high speed injection molding is required to make products which have thin thickness. High speed injection molding means that the resin is injected into the cavity at higher than normal speed avoiding short shot. In the case of hydro-mechanical high speed injection machine, it requires the design for hydraulic unit to make high injection speed and the design for control unit to control hydraulic unit. In the present paper, we concentrated on the molding stability of hydro-mechanical high speed injection machine to make an LGP of 0.3 mm thickness.

  • PDF

Metal-insulator Transition in $(Sr_{0.75},\;La_{0.25})TiO_3$ Ultra-thin Films

  • Choi, Jae-Du;Choi, Eui-Young;Lee, Yun-Sang;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • The $(Sr_{0.75},\;La_{0.25})TiO_3$ (SLTO) ultra-thin films with various thicknesses have been grown on Ti-O terminated $SrTiO_3$(100) substrate using Laser-Molecular Beam Epitaxy (Laser MBE). By monitoring the in-situ specular spot intensity oscillation of reflection high energy electron diffraction (RHEED), we controlled the layer-by-layer film growth. The film structure and topography were verified by atomic force microscopy (AFM) and high resolution thin film x-ray diffraction by the synchrotron x-ray radiation. We have also investigated the electronic band structure using x-ray absorption spectroscopy (XAS). The ultra thin SLTO film exhibits thickness driven metal-insulator transition around 8 unit cell thickness when the film thickness progressively reduced to 2 unit cell. The SLTO thin films with an insulating character showed band splitting in Ti $L_3-L_2$ edge XAS spectrum which is attributed to Ti 3d band splitting. This narrow d band splitting could drive the metal-insulator transition along with Anderson Localization. In optical conductivity, we have found the spectral weight transfer from coherent part to incoherent part when the film thickness was reduced. This result indicates the possibility of enhanced electron correlation in ultra thin films.

  • PDF

Efficiency Characteristics of Cu(In,Ga)Se2 Photovoltaic Thin Films According to the Mo:Na Thickness (Mo:Na두께에 따른 Cu(In,Ga)Se2 태양전지 박막의 효율 특성)

  • Shin, Younhak;Kim, Myunghan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.701-706
    • /
    • 2013
  • We have focused on the conversion efficiency of CIGS thin film solar cell prepared by co-evaporation method as well as the optimization of process condition. The total thickness of back electrode was fixed at 1 ${\mu}m$ and the structural, electric and optical properties of CIGS thin film were investigated by varying the thickness of Mo:Na bottom layer from 0 to 500 nm. From the experimental results, the content of Na was appeared as 0.28 atomic percent when the thickness of Mo:Na layer was 300 nm with compactly densified plate-shape surface morphology. From the XRD measurements, (112) plane was the strongest preferential orientation together with secondary (220) and (204) planes affecting to the crystallization. The lowest roughness and resistivity were 2.67 nm and 3.9 ${\Omega}{\cdot}cm$, respectively. In addition, very high carrier density and hole mobility were recorded. From the optimization of Mo:Na layer, we have achieved the conversion efficiency of 9.59 percent.

A Study on the TCO-less Dye-Sensitized Solar Cell Fabricated with Using Conductive Sputtering Carbon Electrodes (전도성 스퍼터링 탄소전극을 사용한 TCO-less 염료감응형 태양전지의 특성에 관한 연구)

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.725-728
    • /
    • 2016
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various film thickness for the electrodes in TCO-less DSSC (dye-sensitized solar cells). Carbon films prepared at various conditions were exhibited smooth and uniform surfaces without defects. Also, the rms surface roughness of carbon films was decreased from 2.25 nm to 1.0 nm with the increase of film thickness. The sheet resistance as the electrical properties are improved from $11.2{\times}10^{-3}$ to $2.28{\times}10^{-3}$ with the increase of film thickness. In the results, the performance of TCO-less DSSC critically depended on the film thickness of working electrodes, indicating the conductivity of carbon films.