• 제목/요약/키워드: Cell Temperatures

검색결과 695건 처리시간 0.024초

고분자전해질형 연료전지의 작동 온도에 따른 공기극 유로 내 플러딩 현상에 관한 연구 (A Study on the Flooding Phenomena of Cathode Flow Path with Operating Temperatures in a PEM Fuel Cell)

  • 김한상;하태훈;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.326-329
    • /
    • 2005
  • Proton exchange membrane (PEM) should be sufficiently hydrated with proper water management to maintain a good ionic conductivity and performance of a PEM fuel cell. However. cathode flooding resulting from excess water can impede the transport of reactants and hence deteriorate the fuel cell performance. For the PEM fuel cell to be commercially viable as vehicle or portable applications, the flooding on the cathode side should be minimized during the fuel cell operation. In this study, visualization technique was applied to understand the cathode flooding phenomena on the cathode side of a PEM fuel cell. To this end. a transparent PEM unit fuel cell wi th an act ive area of $25cm^2$ was designed and manufactured to allow for the visualization of cathode channel with performance characteristics. Two-phase flow resulting from the electro-chemical reaction of fuel cell was investigated experimentally. The images photographed by CCD camera with cell operating temperatures $(30\~50^{\circ}C)$ were presented. Results indicated that the flooding on the cathode side first occurs near the exit of cathode channel. As the operating temperature of fuel cell increases. it was found that liquid water droplets tend to evaporate easily and it can have an influence on lowering the flooding level. It is expected that this study can effectively contribute to the detailed researches on modeling water transport of an operating PEM fuel cell including two-phase flow phenomena.

  • PDF

Different Structural Modifications Associated with Development of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Kim, Jeong-Ho;Kim, Sang-Gyu;Kim, Mi-Sook;Jeon, Yong-Ho;Cho, Dae-Hui;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2009
  • Root rot caused by Cylindrocarpon destructans is one of the most important diseases of ginseng (Panax ginseng C. A. Meyer). Two types of symptoms found in ginseng root rot are black root rot and rusty root (rusty spots), in which disease severities are high and low, respectively. Symptom development and related histopathological changes were examined in an inoculation test on 2-year-old ginseng roots using virulent (Cy9801) and avirulent (Cy0001) isolates of C. destructans under different temperature conditions (13, 18, 23, and $28^{\circ}C$). Black root rot was only induced by Cy9801 in the lower temperature range (13, 18, and $23^{\circ}C$) and not at the higher temperature ($28^{\circ}C$). No black root rot, but only rusty spot symptoms, were induced by Cy0001 at all temperatures tested except $13^{\circ}C$, at which no symptoms occurred on over half of inoculation sites, suggesting disease development was influenced by pathogen virulence and temperature. Wound periderms were formed in all root tissues with rust spot symptoms at $28^{\circ}C$ caused by Cy9801 and at 18, 23, and $28^{\circ}C$ temperatures caused by Cy0001. No wound periderm was formed at $13^{\circ}C$ by either Cy9801 or Cy0001. Light microscopy revealed that the wound periderm was formed by initial cell divisions in cell wall formation and/or additional cell wall layering in parenchyma cells without obvious nuclear division, followed by layering of the divided cells adjacent to the inoculation sites, blocking the spread of the rot. These results suggest that disease development declined at lower temperatures and by the formation of a wound periderm at higher temperatures, and that ginseng rusty root may develop under conditions unfavorable for further disease development of C. destructans.

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using Deep Neural Network)

  • Khan, Asad;Ko, Young-hwi;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.70-72
    • /
    • 2019
  • For the safe and reliable operation of Lithium-ion batteries in Electric Vehicles (EVs) or Energy Storage Systems (ESSs), it is essential to have accurate information of the battery such as State of Charge (SOC). Many kinds of different techniques to estimate the SOC of the batteries have been developed so far such as the Kalman Filter. However, when it is applied to the multiple number of batteries it is difficult to maintain the accuracy of the estimation over all cells due to the difference in parameter value of each cell. Moreover the difference in the parameter of each cell may become larger as the operation time accumulates due to aging. In this paper a novel Deep Neural Network (DNN) based SOC estimation method for multi cell application is proposed. In the proposed method DNN is implemented to learn non-linear relationship of the voltage and current of the lithium-ion battery at different SOCs and different temperatures. In the training the voltage and current data of the Lithium battery at charge and discharge cycles obtained at different temperatures are used. After the comprehensive training with the data obtained with a cell resulting estimation algorithm is applied to the other cells. The experimental results show that the Mean Absolute Error (MAE) of the estimation is 0.56% at 25℃, and 3.16% at 60℃ with the proposed SOC estimation algorithm.

  • PDF

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network)

  • 아사드 칸;고영휘;최우진
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

동결속도와 침지온도가 Hamster 수정란의 생존성에 미치는 영향 (Effects of Cooling Rates and Plunging Temperatures on Survival of Hamster Embryos)

  • 윤도중;이규승;박창식;서길웅
    • 한국가축번식학회지
    • /
    • 제11권3호
    • /
    • pp.161-169
    • /
    • 1987
  • This experiment was carried out to investigate the optimal cooling rate and the plunging temperature into liquid nitrogen of the 8-cell hamster embryos. The female hamsters were induced to superovulate by intraperitoneal injection of 30 i.u. PMSG. Embryos were flushed from oviduct and uterine horn. Embryos were frozen and incubated with a modified Dulbecco's phosphate buffered saline, and equilibrated with 1.5M-dimethyl sulfoxide by a 3-step procedure. The cooling rate of samples was 1$^{\circ}C$/min from room temperature to -5$^{\circ}C$ and the samples were seeded at -5$^{\circ}C$. The plunging temperatures into liquid nitrogen were -20, -25, -30, -35, -40, -45, -50 and -55$^{\circ}C$ at 0.3$^{\circ}C$/min, 0.5$^{\circ}C$/min and 1$^{\circ}C$/min cooling rates, respectively. This mean numbers of ovulation points and recovered embryos were 59.4 and 48.4 appearing 81.6% recovery rate. The percentage of 8-cell embryos in recovered embryos was 68.2. The survival rates of embryos plunged at -45$^{\circ}C$ were 73.5% at 0.3$^{\circ}C$/min, 44.8% at 0.5$^{\circ}C$/min and 30.3% at 1$^{\circ}C$/min cooling rates, respectively. This mean numbers of ovulation points and recovered embryos were 59.4 and 48.4 appearing 81.6% recovery rate. The percentage of 8-cell embryos in recovered embryos was 68.2. The survival rates of embryos plunged at -45$^{\circ}C$ were 73.5% at 0.3$^{\circ}C$/min, 44.8% at 0.5$^{\circ}C$/min and 30.3% at 1$^{\circ}C$/min cooling rates, respectively. The survival rates at 0.3$^{\circ}C$/min were significantly high. Under the condition of 0.3$^{\circ}C$/min cooling rate, the survival rates of embryos according to the plunging temperature were 70.0% and 73.5% at -40 and -45$^{\circ}C$, and those were higher than other plunging temperatures. Under the condition of 0.5$^{\circ}C$/min and 1$^{\circ}C$/min cooling rates, the survival rates according to the plunging temperatures were lower than the cooling rate of 0.3$^{\circ}C$/min, showing the similar tendency at all the plunging temperatures. In conclusion, 8-cell hamster embryos showed the best survival rates at 0.3$^{\circ}C$/min cooling rate and -45$^{\circ}C$ plunging temperature.

  • PDF

Substrate Temperature Effects on Structural and Optical Properties of RF Sputtered CdS Thin Films

  • 황동현;최정규;손영국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.218.2-218.2
    • /
    • 2013
  • In this study, CdS thin films were deposited onto glass substrates by radio frequency magnetron sputtering. The films were grown at various substrate temperatures in the range of 100 to $250^{\circ}C$. The effects of substrate temperatures on the structural and optical properties were examined. The XRD analysis revealed that CdS films were polycrystalline and retained the mixed structure of hexagonal wurtzite and cubic phase. The percentages of hexagonal structured crystallites in the films were seen to be increased by increasing substrate temperatures. The film grown at $250^{\circ}C$ showed a relatively high transmittance of 80% in the visible region, with an energy band gap of 2.45 eV. The transmittance date analysis indicated that the optical band gap was closely related to the substrate temperatures.

  • PDF

Estimation of bioluminescence intensity of the dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum populations in Korean waters using cell abundance and water temperature

  • Sang Ah Park;Hae Jin Jeong;Jin Hee Ok;Hee Chang Kang;Ji Hyun You;Se Hee Eom;Yeong Du Yoo;Moo Joon Lee
    • ALGAE
    • /
    • 제39권1호
    • /
    • pp.1-16
    • /
    • 2024
  • Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and autotrophic dinoflagellate Alexandrium mediterraneum in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BLcell) of N. scintillans satiated with the chlorophyte Dunaliella salina decreased continuously with increasing water temperature from 5 to 25℃. However, the BLcell of P. kofoidii satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15℃ but decreased at temperatures exceeding this (to 30℃). Similarly, the BLcell of A. mediterraneum continuously increased from 10 to 20℃ but decreased between 20 and 30℃. The difference between highest and lowest BLcell of N. scintillans, P. kofoidii, and A. mediterraneum at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BLcell. The highest estimated population bioluminescence intensity (BLpopul) of N. scintillans in Korean waters in 1998-2022 was 4.22 × 1013 relative light unit per liter (RLU L-1), which was 1,850 and 554,000 times greater than that of P. kofoidii and A. mediterraneum, respectively. This indicates that N. scintillans populations produced much brighter bioluminescence in Korean waters than the populations of P. kofoidii or A. mediterraneum.

작은 진폭의 불균일 온도를 갖는 두 수평 평판 사이에서의 열 대류 (Thermal Convection Between Two Horizontal Plates with Small Amplitude Non-Uniform Temperatures)

  • 유주식;김용진
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.999-1005
    • /
    • 2004
  • Thermal convection between two horizontal walls kept at small amplitude nonuniform temperatures of the form, $T_L=T_1+a{\Delta}T$ sin kx and $T_U=T_2+b{\Delta}T\;sin(kx-{\beta})$ with a, $b{\ll}1$, is numerically investigated. When the Rayleigh number is small, an upright cell is formed between two walls at ${\beta}=0$; the cell is tilted at ${\beta}={\pi}/2$, and a flow with two-tier-structure cells occurs at ${\beta}={\pi}$. As the Rayleigh number is increased, Nusselt number increases smoothly for ${\beta}=0\;and\;{\pi}/2$, but increases rather steeply for ${\beta}={\pi}$ near the critical Rayleigh number ($Ra_c=1708$). When the wave number is small (k=0.5), multicellular convection occurs over one wave length, for all phase differences, and multiple solutions are found.

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

소형 모듈 스택을 이용한 가정용 연료전지 성능의 실험적 고찰 (An Experimental Study of Short Stack on the Performance of the Proton Exchange Membrane Fuel Cell for the Residential Power generation)

  • 최원석;김용모;유상석;이영덕;홍동진;안국영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2008
  • Proton Exchange Membrane Fuel Cell (PEMFC) is an attractive candidate for residential power generator due to fast start-up and stop, high efficiency, low emission, and high power density. In this study, we employ short module stack to understand the performance of the unit cell of the stack in terms of operating temperatures. To simulate the practical fuel cell stack of residential power generator, the structure and active area of the short module stack is kept the same as that of the practical fuel cell. The results shows that the electric potential of short module stack is different from the number of cells times the potential of unit cell because of cell-to-cell variation.

  • PDF