• 제목/요약/키워드: Cell Sorting

검색결과 137건 처리시간 0.024초

An Increased Proportion of Apoptosis in CD4+ T Lymphocytes Isolated from the Peripheral Blood in Patients with Stable Chronic Obstructive Pulmonary Disease

  • Ju, Jinyung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제81권2호
    • /
    • pp.132-137
    • /
    • 2018
  • Background: The pathophysiology of chronic obstructive pulmonary disease (COPD) includes inflammation, oxidative stress, an imbalance of proteases and antiproteases and apoptosis which has been focused on lately. Abnormal apoptotic events have been demonstrated in both epithelial and endothelial cells, as well as in inflammatory cells including neutrophils and lymphocytes in the lungs of COPD patients. An increased propensity of activated T lymphocytes to undergo apoptosis has been observed in the peripheral blood of COPD patients. Therefore, the apoptosis of T lymphocytes without activating them was investigated in this study. Methods: Twelve control subjects, 21 stable COPD patients and 15 exacerbated COPD patients were recruited in the study. The T lymphocytes were isolated from the peripheral blood using magnetically activated cell sorting. Apoptosis of the T lymphocytes was assessed with flow cytometry using Annexin V and 7-aminoactinomycin D. Apoptosis of T lymphocytes at 24 hours after the cell culture was measured so that the T lymphocyte apoptosis among the control and the COPD patients could be compared. Results: Stable COPD patients had increased rates of $CD4^+$ T lymphocyte apoptosis at 24 hours after the cell culture, more than the $CD4^+$ T lymphocyte apoptosis which appeared in the control group, while the COPD patients with acute exacerbation had an amplified response of $CD4^+$ T lymphocyte apoptosis as well as of $CD8^+$ T lymphocyte apoptosis at 24 hours after the cell culture. Conclusion: Stable COPD patients have more apoptosis of $CD4^+$ T lymphocytes, which can be associated with the pathophysiology of COPD in stable conditions.

KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells

  • Zhu, Shengxing;Shi, Jihua;Zhang, Shanfeng;Li, Zhen
    • Journal of Gastric Cancer
    • /
    • 제18권4호
    • /
    • pp.356-367
    • /
    • 2018
  • Purpose: Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods: In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high ($KLK6^{high}$) and KLK6-low ($KLK6^{low}$), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results: The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to $KLK6^{low}$ cells, $KLK6^{high}$ cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions: Together, these results suggest an important role for KLK6 in human gastric cancer progression.

비알코올성 지방간 세포 모델에 대한 택사, 산사, 구기자, 울금, 단삼, 인진의 효능 비교 (Comparison of the Therapeutic Efficacy of Rhizoma Alismatis, Fructus Crataegi, Fructus Lycii, Radix Curcumae, Radix Salviae Miltiorrhizae, Herba Artemisiae Scopariae on the Experimental Cellular Model of Nonalcoholic Fatty Liver Disease)

  • 한창우;주명수;이장훈
    • 대한한방내과학회지
    • /
    • 제33권4호
    • /
    • pp.533-542
    • /
    • 2012
  • Objectives : We try to compared the efficacy of six herbal medicines, Rhizoma Alismatis (RA), Fructus Crataegi (FC), Fructus Lycii (FL), Radix Curcumae (RC), Radix Salviae Miltiorrhizae (RSM), and Herba Artemisiae Scopariae (HAS), constituting KHchunggan-tang which was previously proven to be hepatoprotective on non-alcoholic fatty liver disease with combined properties of cellular steatosis, ROS production, and cytoprotection. Methods : HepG2 cells were pretreated with aqueous extracts of the six herb medicines at concentrations of 1, 10, 50 and 100 ${\mu}g/ml$ each, and treated with 0.5 mM palmitate consecutively. After 21 hrs, cell viability was assessed using MTT assay, and the percentage of cells with sub-G1 DNA content was measured using fluorescence-activated cell sorting after propidium iodide staining. Results : The first three extracts, RA, FC, and FL restored cell viability reduced by palmitate in MTT assay, and RA, FC, FL and RC inhibited palmitate-induced apoptosis in sub-G1 analysis. FL showed relatively weak potential only at tested maximal dose, and RA showed the greatest higher efficacy on this experimental cellular model of nonalcoholic fatty liver disease. Conclusions : According to this comparative experiment, Rhizoma Alismatis seems to have the most powerful potential among the six herbs constituting KHchunggan-tang, and consecutive further study seems to be required for more standardized and effective clinical application of KHchunggan-tang for treatment of non-alcoholic fatty liver disease.

Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

  • Kim, Seong Sik;Kwon, Dae-Woo;Im, Insook;Kim, Yong-Deok;Hwang, Dae-Seok;Holliday, L. Shannon;Donatelli, Richard E.;Son, Woo-Sung;Jun, Eun-Sook
    • 대한치과교정학회지
    • /
    • 제42권6호
    • /
    • pp.307-317
    • /
    • 2012
  • Objective: The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods: PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results: An average of $152.8{\pm}27.6$ colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About $5.6{\pm}4.5%$ of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions: The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications.

Evaluation of Antioxidant Activities of Peptides Isolated from Korean Fermented Soybean Paste, Chungkukjang

  • Kim, Sun-Lim;Chi, Hee-Youn;Kim, Jung-Tae;Hur, On-Sook;Kim, Deog-Su;Suh, Sae-Jung;Kim, Hyun-Bok;Cheong, Ill-Min
    • 한국작물학회지
    • /
    • 제56권4호
    • /
    • pp.349-360
    • /
    • 2011
  • The objectives of present study were to characterize the peptides which were isolated from Korean fermented soybean paste, chungkukjang, and to determine their antioxidant activities. Four fractions were collected from the methanol extract of chungkukjang by using a recycling preparative HPLC. Among fractions, Fr-2 was identified to be highly potent free radical scavenging activity in the assay of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and nitroblue tetrazolium(NBT)-reduction inhibition. Base on antioxidant effects, fraction Fr-2 was employed for the refraction with a prep-column and separated into five fractions of which two fractions were identified to have higher antioxidant activity. To confirm the amino acid constituents of antioxidant fractions Fr-2-2 and Fr-2-3 were analyzed, and eight kinds of amino acids such as aspartic acid, threonine, serine, glutamic acid, glycine, lysine, histidine, and arginine were identified as the constituent amino acids. Antioxidant activities of the separated peptides were further assessed cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl terazolium bromide (MTT), and fluorescence-activated cell sorting (FACS) analysis of H4IIE cells treated with hydrogen peroxide (H2O2). Chungkukjang peptides have shown their ability to protect H4IIE rat hepatoma cells against H2O2- induced oxidative stress by concentration and time-dependent manner. Therefore, These results indicated that fermented soybean paste chungkukjang will be promoted the antioxidant and radical scavenging activities, and beneficial for health. The antioxidant peptide fractions Fr-2-2 and Fr-2-3 were denominated as P-NICS-1 and P-NICS-2, respectively. However, further studies were required to clarify their amino acid sequences and molecular properties, and physiological significances.

Overexpression of Semaphorin4D Indicates Poor Prognosis and Prompts Monocyte Differentiation toward M2 Macrophages in Epithelial Ovarian Cancer

  • Chen, Ying;Zhang, Lei;Lv, Rui;Zhang, Wen-Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5883-5890
    • /
    • 2013
  • Previously, we demonstrated overexpression of semaphorin4D (SEMA4D, CD100) to be closely related to tumor angiogenesis in epithelial ovarian cancers (EOCs). However, the function and expression of SEMA4D in the EOC microenvironment has yet to be clarified in detail. In this study, we confirmed that overexpression of SEMA4D in primary tumors and ascites was related to low differentiation, platinum resistance and a refractory status (P<0.05), while high M2 macrophage count and percentage were evident in EOC patients with advanced FIGO stage and platinum resistance (P<0.05), using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and fluorescence-activated cell sorting (FACS), respectively. The data showed correlations of SEMA4D expression and M2 macrophage counts in primary tumors and M2 macrophage percentage in ascites (r=0.281 and 0.355, each P<0.05). In the Cox proportional hazard mode, SEMA4D expression was an independent indicator of overall survival (OS) and progression-free survival (PFS) for EOC patients. Furthermore, higher expression of SEMA4D in ovarian cancer cell lines (SKOV3, A2780, and SW626) and their supernatants were found than that in a human primary cultured ovarian cell and its supernatant by reversed transcript PCR (RT-PCR), Western blotting and ELISA, respectively. Interestingly, peripheral blood monocytes (MOs) tended towards the M2-polarized macrophage phenotype ($CD163^{high}$) in vitro after human recombined soluble SEMA4D protein stimulation. These findings suggest that SEMA4D might possibly serve as a reliable tool for early and accurate prediction of EOC poor prognosis and could playan important role in promoting tumor dissemination and metastasis in the EOC microenvironment. Thus SEMA4D and its role in macrophage polarization in EOC warrants further study.

Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System

  • Koo, Ok Jae;Park, Sol Ji;Lee, Choongil;Kang, Jung Taek;Kim, Sujin;Moon, Joon Ho;Choi, Ji Yei;Kim, Hyojin;Jang, Goo;Kim, Jin-Soo;Kim, Seokjoong;Lee, Byeong-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권3호
    • /
    • pp.324-329
    • /
    • 2014
  • To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells ($RFP^+/eGFP^+$) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

Quercetin-induced Growth Inhibition in Human Bladder Cancer Cells Is Associated with an Increase in $Ca^{2+}$-activated $K^+$ Channels

  • Kim, Yang-Mi;Kim, Wun-Jae;Cha, Eun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.279-283
    • /
    • 2011
  • Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased $BK_{Ca}$ current in a concentration dependent and reversible manner using a whole cell patch configuration. The half maximal activation concentration ($IC_{50}$) of quercetin was $45.5{\pm}7.2{\mu}m$. The quercetin-evoked $BK_{Ca}$ current was inhibited by tetraethylammonium (TEA; 5 mM) a non-specific $BK_{Ca}$ blocker and iberiotoxin (IBX; 100 nM) a $BK_{Ca}$-specific blocker. Quercetin-induced membrane hyperpolarization was measured by fluorescence-activated cell sorting (FACS) with voltage sensitive dye, bis (1,3-dibutylbarbituric acid) trimethine oxonol ($DiBAC_4$2(3); 100 nM). Quercetin-evoked hyperpolarization was prevented by TEA. Quercetin produced an antiproliferative effect ($30.3{\pm}13.5%$) which was recovered to $53.3{\pm}10.5%$ and $72.9{\pm}3.7%$ by TEA and IBX, respectively. Taken together our results indicate that activation of $BK_{Ca}$ channels may be considered an important target related to the action of quercetin on human bladder cancer cells.

Isolation of human mesenchymal stem cells from the skin and their neurogenic differentiation in vitro

  • Byun, Jun-Ho;Kang, Eun-Ju;Park, Seong-Cheol;Kang, Dong-Ho;Choi, Mun-Jeong;Rho, Gyu-Jin;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제38권6호
    • /
    • pp.343-353
    • /
    • 2012
  • Objectives: This aim of this study was to effectively isolate mesenchymal stem cells (hSMSCs) from human submandibular skin tissues (termed hSMSCs) and evaluate their characteristics. These hSMSCs were then chemically induced to the neuronal lineage and analyzed for their neurogenic characteristics in vitro. Materials and Methods: Submandibular skin tissues were harvested from four adult patients and cultured in stem cell media. Isolated hSMSCs were evaluated for their multipotency and other stem cell characteristics. These cells were differentiated into neuronal cells with a chemical induction protocol. During the neuronal induction of hSMSCs, morphological changes and the expression of neuron-specific proteins (by fluorescence-activated cell sorting [FACS]) were evaluated. Results: The hSMSCs showed plate-adherence, fibroblast-like growth, expression of the stem-cell transcription factors Oct 4 and Nanog, and positive staining for mesenchymal stem cell (MSC) marker proteins (CD29, CD44, CD90, CD105, and vimentin) and a neural precursor marker (nestin). Moreover, the hSMSCs in this study were successfully differentiated into multiple mesenchymal lineages, including osteocytes, adipocytes, and chondrocytes. Neuron-like cell morphology and various neural markers were highly visible six hours after the neuronal induction of hSMSCs, but their neuron-like characteristics disappeared over time (24-48 hrs). Interestingly, when the chemical induction medium was changed to Dulbecco's Modified Eagle Medium (DMEM) supplemented with fetal bovine serum (FBS), the differentiated cells returned to their hSMSC morphology, and their cell number increased. These results indicate that chemically induced neuron-like cells should not be considered true nerve cells. Conclusion: Isolated hSMSCs have MSC characteristics and express a neural precursor marker, suggesting that human skin is a source of stem cells. However, the in vitro chemical neuronal induction of hSMSC does not produce long-lasting nerve cells and more studies are required before their use in nerve-tissue transplants.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.