• Title/Summary/Keyword: Cell Size

Search Result 3,847, Processing Time 0.033 seconds

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Analysis of the effect of changes in the gate design on cell size and density in Mucell injection molding (초미세 발포성형에서 게이트의 형상 변화에 따른 셀의 크기 및 밀도에 대한 영향도 분석)

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.64-69
    • /
    • 2023
  • This paper explores the impact of gate shape changes on the size and density of foamed cells in microcellular foam injection molding. Five different gate shapes were examined while varying the amount of nitrogen gas(N2) injected for foaming. Analysis of the results showed that while average values did not change significantly, deviation values decreased by approximately 65% for cell size and 56% for density when 3.5wt% of nitrogen gas was injected in the film gate. Further analysis was conducted to verify this phenomenon, revealing that the contact area between the gate and product had the greatest impact. Our findings indicate that to ensure uniform generation of foamed cells in microcellular foaming product design, a gate with a wide contact area should be secured.

  • PDF

A study on local back contact of crystalline solar cell according for electrical specific analysis research in junction area (결정질 태양전지의 국부적 후면 전극 형성에서 접합 면적에 따른 전기적 특성분석 연구)

  • Jang, Juyeon;Song, Kyuwan;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.56.2-56.2
    • /
    • 2010
  • 국부적 후면 전극(LBC)형성은 결정질 실리콘 태양전지에서 고효율과 저가화를 동시에 달성할 수 있는 기술이다. 후면 표면 passivation과 국부적 후면 전극 형성을 통해서 후면 재결합 속도를 낮출 수 있고 이를 통해 효율향상을 기대해볼 수 있다. 본 연구에서는 PECVD를 이용한 LBC(local back contact) cell의 후면 passivation 박막을 형성하였고 접합면적에 따른 전기적 특성을 분석해 보았다. LBC cell을 위한 후면 passivation 박막은 PECVD를 이용한 ONO박막을 사용하였고, 후면 opening 형성에 etching paste를 이용하였다. Opening size는 0.4mm,0.5mm,0.7mm로 형성하여 cell을 제작하고 효율을 분석하였다. 실험결과 opening size가 0.4mm일때 전극의 접촉면적이 15.96%, 0.5mm일때 10.22%, 0.7mm일때 5.17%로 형성됨을 확인할 수 있었다. Opening size가 0.4mm일 때 cell의 효율이 가장 우수함을 IQE 및 LIV 결과를 통해 확인 할 수 있었다. 결과적으로 접촉면적이 증가함에 따라 전극에서 수집되는 carrier의 양이 증가하고 셀 효율역시 향상됨을 확인 할 수 있었다.

  • PDF

Individual Charge Equalization Converter Using Selective Two Current Paths for Series Connected Li-ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.274-276
    • /
    • 2008
  • This paper proposes an individual charge equalization converter using selective two current paths for series connected lithium-ion battery strings. In the proposed equalizer, a central equalization converter acting as a controllable current source is sequentially connected in parallel with individual batteries through an array of cell selection switches. A flyback converter with a modified rectifier realizes a controllable current source. A central equalization converter is shared by every battery cells through the cell selection switch, instead of a dedicated charge equalizer for each cell. With this configuration, although the proposed equalizer has one dc-dc converter, individual charge equalization can be effectively achieved for the each cell in the strings. Furthermore, since the proposed equalizer would not allocate the separated dc-dc converter to each cell, such that the implementation of great size reduction and low cost can be allowed. In this paper, an optimal power rating design guide is also employed to obtain a minimal balancing size while satisfying equalization requirements. A prototype for eight lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing small size, and low cost.

  • PDF

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

Analysis of Sodium Spray Fire Using Gaussian Droplet Size Distribution (Gaussian 액적 크기 분포 함수를 이용한 분무형 화재 현상 해석)

  • Kim, B.H.;Hahn, D.H.;Suh, S.H.
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.72-81
    • /
    • 2004
  • Study on the analysis of sodium spray fire using Gaussian drop size distribution, which redistributes a droplet spectrum with given mean diameter if its size classes with critical diameter(D>8mm) occur, was carried out. In this case, the oversized droplets were reduced to a stable diameter. Results calculated by the code using Gaussian drop size distribution were in better agreement with AI experimental results than those of NACOM and SPRAY code. The effect of variance on pressure in the test cell appeared greatly by introducing Gaussian function, which could represent various sodium droplet size distribution. The increase of the variance with mean droplet size resulted had an important effect upon the pressure in the test cell.

The Influence of Food Hydrocolloids on Changes in the Physical Properties of Ice Cream

  • Park, Sung-Hee;Hong, Guen-Pyo;Kim, Jee-Yeon;Choi, Mi-Jung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.721-727
    • /
    • 2006
  • This study was carried out to investigate the effect of hydrocolloids on the changes in physical properties of a model ice cream. The model ice cream contained water, sugar, skin milk powder, com oil, and 4 different hydrocolloid stabilizers (gelatin, pectin, hydroxyethylstarch, locust bean gum), was manufactured in a batch type freezer. The following physical characteristics of ice cream were examined: flow behavior, overrun, air cell size, ice crystal size, and melt resistance. With regard to flow behavior, all of aged mixes had a lower apparent viscosity relative to the mix before aging, and ice cream mix containing locust bean gum had the highest viscosity. Air cell size was observed to range from 20 to $38\;{\mu}m$, and ice cream with locust bean gum showed the largest size. There was an inverse correlation between overrun and air cell size. The ice crystal sizes of all samples ranged from 25 to $35\;{\mu}m$. Ice cream with added pectin contained the smallest ice crystal size, which was significantly difference from other stabilizers (p<0.05), and resulted in superior melt resistance with increased melting time compared to other samples.

Design of Low-Area 1-kb PMOS Antifuse-Type OTP IP (저면적 1-kb PMOS Antifuse-Type OTP IP 설계)

  • Lee, Cheon-Hyo;Jang, Ji-Hye;Kang, Min-Cheol;Lee, Byung-June;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1858-1864
    • /
    • 2009
  • In this paper, we design a non-volatile memory IP, 1-kb one-time programmable (OTP) memory, used for power management ICs. Since a conventional OTP cell uses an isolated NMOS transistor as an antifuse, there is an advantage of it big cell size with the BCD process. We use, therefore, a PMOS transistor as an antifuse in lieu of the isolated NMOS transistor and minimize the cell size by optimizing the size of a OTP cell transistor. And we add an ESD protection circuit to the OTP core circuit to prevent an arbitrary cell from being programmed by a high voltage between the terminals of the PMOS antifuse when the ESD test is done. Furthermore, we propose a method of turning on a PMOS pull-up transistor of high impedance to eliminate a gate coupling noise in reading a non-programmed cell. The layout size of the designed 1-kb PMOS-type antifuse OTP IP with Dongbu's $0.18{\mu}m$ BCD is $129.93{\times}452.26{\mu}m^2$.