• Title/Summary/Keyword: Cell Loading

Search Result 484, Processing Time 0.028 seconds

Influence of the Catalyst Composition on Electrode Performance for Polymer Electrolyte Membrane Fuel Cells (촉매조성이 PEM용 연료전지의 전극특성에 미치는 영향)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.43-48
    • /
    • 2002
  • In this study, high performance electrode catalyst was developed in fabrication of membrane electrode assembly for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). The I-V characteristics were measured to evaluate the influence of Nafion solution and Pt loading amount in the catalyst composition. The electrode characteristics were also investigated with respect to temperature change. The electrode performance was optimized at Nafion 5 wt% and 0.5 mg Pt/$\textrm{cm}^2$ content. The increase in the concentration of Nafion solution resulted in the decrease in electrode performance. At $80^{\circ}C$ of unit cell, I-V characteristics excelled those obtained at lower temperature. There was no difference in performance at low current density, but the improvement of voltage value in higher temperature could be found at high current density.

  • PDF

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Optimization of $TiO_2$ Method to Identify the Phosphorylation Sites of ${\apha}$-Casein (${\apha}$-Casein의 인산화 위치 규명을 위한 티타늄 다이옥사이드($TiO_2$) 방법의 최적화)

  • Kim, Hye-Jeong;Park, Ja-Hye;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.407-411
    • /
    • 2008
  • Phosphorylation plays the most important role in cell signaling mechanism. Various methods to identify the phosphorylation sites of proteins using tandem mass spectrometry (MS/MS) have been reported recently. Furthermore, the enrichment strategy such as Titanium dioxide ($TiO_2$) method should be combined with MS/MS analysis to effectively identify phosphorylation sites. It is necessary to optimize phosphopeptide-enrichment strategy, $TiO_2$ method in this study, due to the low amount of phosphorylated form followed by analyzing them by MS/MS. To evaluate the several conditions to enrich phosphopeptides using $TiO_2$ method, we used ${\apha}$-casein as a standard phosphoprotein and analyzed a representative phosphopeptide (VPQLEIVPNpSAEER) peak of MS spectrum. Batch is better than column method for binding and 300 g/l DHB in loading buffer is better than lower concentration of DHB. 3% TFA and pH 10.5 shows high efficiency of phosphopeptide-enrichment for washing and elution steps, respectively. Finally we identified various efficient conditions of phosphopeptide-enrichment method using $TiO_2$. This optimized method would assist in reliable identifying thousands of phosphorylation sites existed in low abundance from various complex proteins.

Targeted Drug Delivery Carriers Using Folate Conjugated Poly((R)-3-hydroxy butyrate)-Poly(ethylene glycol) Nanoparticles (Folate가 수식된 Poly((R)-3-hydroxy butyrate)-Poly(ethylene glycol) 나노입자를 이용한 표적지향형 약물전달체)

  • Kwon, Seung-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.515-519
    • /
    • 2009
  • Biodegradable poly((R)-3-hydroxy butyrate) and poly(ethylene glycol) was conjugated to make amphiphilic di-block copolymer. Folate was conjugated at di-block copolymer to target the cancer cells. Copolymer was ready to form the self-assembled micelle whose size was 125~156 nm in aqueous solution. Griseofulvin as a hydrophobic drug was loaded in nanoparticles. Their loading efficiencies were 35~56%. Hydrophobic drug was continuously released for 24 h. Cell viability test showed that folate attached particles were 10% more efficient than the particles without targeting ligands.

Pharmaceutical Studies on Chitosan Matrix: Controlled release of aspirin from chitosan device

  • Lee, Chi-Young;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 1987
  • Chitosan ($\beta$-D-glucosaminan) is chemically prepared from chitin (N-acetyl-$\beta$- D-glucosaminan) which is an unutilized natural resource. We now report on the suitability of the chitosan matrix for use as vehicles for the controlled release of drugs. Salicylic acid and aspirin were used as model drugs in this study. The permeation of salicylic acid in the chitosan membranes was determined in a glass diffusion cell with two compartments of equal volume. Drug release studies on the devices were conducted in a beaker containing 5% sodium hydroxide solution. Partition coefficient (Kd) value for acetate membrane (472) is much greater than that for fluoro-perchlorate chitosan membrane (282). Higher Kd value for acetate chitosan membrane appears to be inconsisstent with the bulk salicylic acid concentration. The permeability constants of fluoro-perchlorate and acetate chisotan membranes for salicylic acid were 3.139 ${\times}10^{-7}cm^2$ min up to 60 min and that of 30% aspirin in the devices was 4.739${\times}10^{-7}cm^2$sec upto 60 min. As the loading dose of aspirin in a chitosan device increased, water up-take of chitosan device increased, but in case of salicylic acid it decreased. The release rate increased with increase in the molecular volume of the drugs. Thses result suggest that the release mechanism may be controlled mainly by diffusion through pores.

  • PDF

Effect of Particle Size and Packing Density on the Determination of Grain Protein by the Infrared Grain Quality Analyzer (적외선 곡류품질분석기(GQA)의 단백질 정량에 미치는 측정시료의 Particle Size 및 충진밀도의 영향)

  • Shin, H.K.;Ryu, I.S.
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.81-85
    • /
    • 1979
  • A Neotec infrared instrument was evaluated for determination of protein contents of wheat and barley. Correlation coefficients between protein content determined on the instrument and by the Kjeldahl method were highly significant (0.97 to 0.98). Accuracy of analyses, measured by the standard error of a single test was 0.07 to 0.16, giving a coefficient of variability of 0.6 to 1. 1%. Method of grinding samples affected particle size and type. Particle size did not directly influence protein values; however, greater accuracy and reproducibility were achieved with smaller particle sizes. Packing density inside the loading tell also influenced the analytical results.

  • PDF

Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction (압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험)

  • Kim, Y.B.;Lee, J.S.;Lee, S.M.;Park, H.J.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

Development of a Hybrid Power Generation System Using Photovoltaic Cells and Piezoelectric Materials (태양 전지와 압전 재료를 이용한 하이브리드 발전시스템 개발)

  • Kim, Yeongmin;Ahmed, Rahate;Zeeshan, Zeeshan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.51-58
    • /
    • 2019
  • This paper deals with the operation of a hybrid power generation system made with photovoltaic cells and piezoelectric materials. The system can produce power from the wind as well as from the sun subject to their availability. Irrespective of the largeness of their power production, the power developed by both generators (i.e., phtovoltaic cells and piezoelectric cells) were combined and stored before it was applied to a load. Especially, the AC power (current) developed from each piezoelectric generator was converted by a full wave bridge rectifier and then combined prior to its storage in a capacitor. It was observed that the system can produce a maximum output power of 6.49 mW at loading resistance of $100{\Omega}$.

Structural evaluation of a foldable cable-strut structure for kinematic roofs

  • Cai, Jianguo;Zhang, Qian;Zhang, Yiqun;Lee, Daniel Sang-hoon;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.669-680
    • /
    • 2018
  • The rapidly decreasing natural resources and the global variation of the climate push us to find intelligent and efficient structural systems to provide more people with fewer resources. This paper proposed a kinematic cable-strut system to realize sustainable structures in responding to changing environmental conditions. At first, the concept of the kinematic system based on crystal-cell pyramid (CP) cable-strut unit was given. Then the deployment of the structure was studied experimentally. After that, the static behaviors in the fully deployed state under the symmetric and asymmetric load cases were investigated. Moreover, the effects of thermal loading and the initial prestress distribution were also discussed. Comparative studies between the proposed structure and other deployable cable-strut system under three times of design load cases were carried out. Finally, the robustness of the system was studied by removal of one passive cable at one time.

Assessment of creep improvement of organic soil improved by stone columns

  • Kumail R. Al-Khafaji;Mohammed Y. Fattah;Makki K. Al-Recaby
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.191-203
    • /
    • 2024
  • One of the issues with clayey soils, particularly those with significant quantities of organic matter, is the creep settling problem. Clay soils can be strengthened using a variety of techniques, one of which is the use of stone columns. Prior research involved foundation loading when the soil beds were ready and confined in one-dimensional consolidation chambers. In this study, a particular methodology is used to get around the model's frictional resistance issue. Initially, specimens were prepared via static compaction, and they were then re-consolidated inside a sizable triaxial cell while under isotropic pressure. With this configuration, the confining pressure can be adjusted, the pore water pressure beneath the foundation can be measured, and the spacemen's lateral border may be freely moved. This paper's important conclusions include the observation that secondary settlement declines with area replacement ratio. Because of the composite ground's increasing stiffness, the length to diameter ratio (l/d) and the stone column to sample height ratio (Hc/Hs) both increase. The degree of improvement varies from 12.4 to 55% according to area replacement ratio and (l/d) ratio.