• 제목/요약/키워드: Cell Junction

검색결과 503건 처리시간 0.025초

고 중량 측정 장치를 위한 지능형 모니터링 시스템 (The Intelligent Monitoring System for a heavy weight scale)

  • 김영구;조현찬;정병우;김두용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, we propose an Intelligent Monitoring Network System(IMNS) for The truck scale balance system. Truck scale balance system consis of three parts; Load cell part, Indicator part, and Junction box part. IMNS is attached to Junction box in truck scale balance system. Even if Load cell have been some problems, a truck scale balance system still has been run to determine, the values involved error. therefore prosed system is has concentrated on Load cell part. Other Parts have been changed a portion of circuit for monitoring system.

  • PDF

Thin Film Amorphous/Bulk Crystalline Silicon Tandem Solar Cells with Doped nc-Si:H Tunneling Junction Layers

  • 이선화;이준신;정채환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.257.2-257.2
    • /
    • 2015
  • In this paper, we report on the 10.33% efficient thin film/bulk tandem solar cells with the top cell made of amorphous silicon thin film and p-type bulk crystalline silicon bottom cell. The tunneling junction layers were used the doped nanocrystalline Si layers. It has to allow an ohmic and low resistive connection. For player and n-layer, crystalline volume fraction is ~86%, ~88% and dark conductivity is $3.28{\times}10-2S/cm$, $3.03{\times}10-1S/cm$, respectively. Optimization of the tunneling junction results in fill factor of 66.16 % and open circuit voltage of 1.39 V. The open circuit voltage was closed to the sum of those of the sub-cells. This tandem structure could enable the effective development of a new concept of high-efficiency and low cost cells.

  • PDF

PRESENT AND FUTURE OF SUPER HIGH-EFFICIENCY TANDEM SOLAR CELLS

  • Yamaguchi, Masafumi
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, present status of super high-efficiency tandem solar cells has been reviewed and key issues for realizing super high-efficiency have also been discussed. In addition, the terretrial R&D activities of tandem cells, in the New Sunshine Program of MITI(Ministry of International Trade and Industry) and NEDO(New Energy and Industrial Technology Development Organization) in Japan are reviewed briefly. The mechanical stacked 3-junction cells of monolithically grown InGaP/GaAs 2-junction cells and InGaAs cells have reached the highest efficiency achieved in Japan of 33.3% at 1-sun AM1.5. This paper also reports high-efficiency InGaP/GaAs 2-junction solar cells with a world-record efficiency of 26.9% at AM0, 28$^{\circ}C$ and radiation damage recovery phenomena of the tandem cell performance due to minority-carrier injection under light illumination or forward bias, which causes defect annealing in InGaP top cells. Future prospects for realizing super-high efficiency and low-cost tandem solar cells are also described.

  • PDF

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

실내조명 응용을 위한 투명 집광 렌즈를 이용한 태양전지 효율 향상 (Improvements in Solar Cell Efficiency using a PMMA Concentrator Lens for Indoor Use)

  • 이유종
    • 한국정보통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.929-934
    • /
    • 2010
  • 실내조명하에서 유비쿼터스 센서 네트워크 태그 및 노드 전원으로 태양전지 사용 가능성을 실험하기 위해 PMMA(Poly-Methyl-Methacrylate) 렌즈를 단일접합 AlGaAs/GaAs 태양전지 위에 덧씌워서 렌즈로 사용한 결과 태양 전지의 특성이 향상 되었다. PMMA 렌즈를 덧씌운 효과를 비교하기 위해 AlGaAs 단일접합 태양전지에 PMMA 렌즈를 덧씌우기 전과 후의 특성을 각각 one sun 조건 ($100mW/cm^2$) 하에서 측정하였으며, 실내의 탁상램프 조명 근접거리 조건(약 1200 룩스)하에서 특성 측정 결과를 비교하였다. PMMA 렌즈를 덧씌운 결과 약 5% 정도의 효율이 향상되었고, 탁상용 형광램프 조건에서 $83\;{\mu}m/cm^2$ 이상의 전기에너지가 발생됨을 확인하였다. 실내조명 조건에서는 one sun ($100mW/cm^2$) 에 비해서 광량이 매우 작으므로 발생전압과 발생 전류가 상당히 감소하게 된다. 하지만 $83\;{\mu}m/cm^2$ 정도의 전기에너지가 발생되어 향 후 렌즈효율 개선과 모듈 설계를 통해 USN 태그 및 노드용 전원으로 충분히 적용 가능할 것으로 사료된다.

PC1D 시뮬레이션을 이용한 결정질 실리콘 태양전지의 도핑 프로파일 모델링 (The Doping Profile Modeling of Crystalline Silicon Solar Cell with PC1D simulation)

  • 최성진;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 2011
  • The PC1D is widely used for modeling the properties of crystalline silicon solar cell. Optimized doping profile in crystalline silicon solar cell fabrication is necessary to obtain high conversion efficiency. Doping profile in the forms of a uniform, gaussian, exponential and erfc function can be simulated using the PC1D program. In this paper, the doping profiles including junction depth, dopant concentration on surface and the form of doping profile (gaussian, gaussian+erfc function) were changed to study its effect on electrical properties of solar cell. As decreasing junction depth and doping concentration on surface, electrical properties of solar cell were improved. The characteristics for the solar cells with doping profile using the combination of gaussian and erfc function showed better open-circuit voltage, short-circuit current and conversion efficiency.

  • PDF

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • 박준서;김지훈;고형덕;이기용;김정혁;한일기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

Growth-Suppressing Activity of the Transfected Cx26 on BICR-M1Rk Breast Cancer Cell Line

  • Lee, Hae-Jung;Rhee, Seung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.477-482
    • /
    • 2011
  • There are accumulating evidences suggesting that connexin (Cx), a gap junction channel-forming protein, acts as a growth suppressor in various cancer cells, and this effect is attributeed to the gap junction-mediated intercellular communication (GJIC). In order to characterize the relationship between the growth-arresting activity of Cx26 and its cytoplasmic localizations after expression, we linked a nuclear export signal (NES) sequence to Cx26 cDNA before transfecting into a rat breast cancer cell line. A confocal fluorescent microscopic observation revealed that the insertion of NES minimized the nuclear expression of Cx26, and increased its cytoplasmic expression, including plasma membrane junctions. Total cell counting and BrdUrd-labeling experiments showed that the growth of the breast cancer cells was inhibited by 74% upon transfection of Cx26-NES, whereas only 9% inhibition was observed with only Cx26 cDNA.

Technology of MRAM (Magneto-resistive Random Access Memory) Using MTJ(Magnetic Tunnel Junction) Cell

  • Park, Wanjun;Song, I-Hun;Park, Sangjin;Kim, Teawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권3호
    • /
    • pp.197-204
    • /
    • 2002
  • DRAM, SRAM, and FLASH memory are three major memory devices currently used in most electronic applications. But, they have very distinct attributes, therefore, each memory could be used only for limited applications. MRAM (Magneto-resistive Random Access Memory) is a promising candidate for a universal memory that meets all application needs with non-volatile, fast operational speed, and low power consumption. The simplest architecture of MRAM cell is a series of MTJ (Magnetic Tunnel Junction) as a data storage part and MOS transistor as a data selection part. To be a commercially competitive memory device, scalability is an important factor as well. This paper is testing the actual electrical parameters and the scaling factors to limit MRAM technology in the semiconductor based memory device by an actual integration of MRAM core cell. Electrical tuning of MOS/MTJ, and control of resistance are important factors for data sensing, and control of magnetic switching for data writing.

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권1호
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.