• 제목/요약/키워드: Cell Deformability

검색결과 27건 처리시간 0.022초

Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer

  • Sehyun Shin;Yunhee Ku;Park, Myung-Su;Suh, Jang-Soo
    • Korea-Australia Rheology Journal
    • /
    • 제16권2호
    • /
    • pp.85-90
    • /
    • 2004
  • The present study investigated the deformability of red blood cells (RBC) and its effect on whole blood viscosity using a laser-diffraction slit-rheometer (LDSR). The LDSR has been recently developed with significant advances in laser-diffractometry design, operation and data analysis. While shear stress levels in a slit flow are continuously decreasing, both the deformation of red blood cells and the shear stress were simultaneously measured. Additionally, the viscosity of whole blood was measured using the LDSR. The present study found that the whole blood viscosity is strongly dependent on the RBC deformability. The less deformable the RBCs are, the higher the blood viscosity is.

Storage of laboratory animal blood samples causes hemorheological alterations : Inter-species differences and the effects of duration and temperature

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Kiss, Ferenc;Uyuklu, Mehmet;Hever, Timea;Sajtos, Erika;Kenyeres, Peter;Toth, Kalman;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • 제21권2호
    • /
    • pp.127-133
    • /
    • 2009
  • Hemorheological results may be influenced by the time between blood sampling and measurement, and storage conditions (e.g., temperature, time) during sample delivery between laboratories may further affect the resulting data. This study examined possible hemorheological alterations subsequent to storage of rat and dog blood at room temperature ($22^{\circ}C$) or with cooling ($4{\sim}10^{\circ}C$) for 2, 4, 6, 24, 48 and 72 hours. Measured hemorheological parameters included hematological indices, RBC aggregation and RBC deformability. Our results indicate that marked changes of RBC deformability and of RBC aggregation in whole blood can occur during storage, especially for samples stored at room temperature. The patterns of deformability and aggregation changes at room temperature are complex and species specific, whereas those for storage at the lower temperature range are much less complicated. For room temperature storage, it thus seems logical to suggest measuring rat and dog cell deformability within 6 hours; aggregation should be measured immediately for rat blood or within 6 hours for dog blood. Storage at lower temperatures allows measuring EI up to 72 hours after sampling, while aggregation must be measured immediately, or if willing to accept a constant decrease, over 24~72 hours.

Hemorheological measurements in experimental animals: further consideration of cell size - pore size relations in filtrometry

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.155-160
    • /
    • 2009
  • Micropore filtration of dilute red blood cell (RBC) suspensions is a widely known method for determining red blood cell deformability. Use of this method for cells from various laboratory animal species does require considering the effects of the cell size to pore size ratio and of suspension hematocrit. In general, previous animal studies have utilized 5% hematocrit suspensions and five micron pores, and thus conditions similar to human clinical laboratory practice. However, when used for repeated sampling from small laboratory animals or for parallel multiple samples from different sites in large laboratory animals, the volume of blood sampled and hence the hematocrit of the test suspension may be limited. Our results indicate that hematocrit levels yielding stable values of RBC pore transit time are pore size and species specific: three micron pores = $2{\sim}5%$ for dog and $3{\sim}5%$ for rat; five micron pores $3{\sim}5%$ for dog and $1{\sim}5%$ for rat. An analytical approach using a common expression for calculating transit time is useful for determining the sensitivity of this time to hematocrit alterations and hence to indicate hematocrit levels that may be problematic.

급원이 다른 식이 지방이 흰쥐의 적혈구 성상 및 Ca 함량에 미치는 영향 -참깨유, 들깨유, 미강유 중심으로- (The Changes of Erythrocyte Feature and Ca Concentration in Rat Fed the Diet Containing Different Common Oils in Korea : Sesame Oil, Perilla Oil, Rice Bran Oil and Mixed Oil)

  • 김숙희
    • Journal of Nutrition and Health
    • /
    • 제26권5호
    • /
    • pp.524-531
    • /
    • 1993
  • In this experiment, we investigated the changes of erythrocyte feature and Ca concentration in rat fed the diet containing different common oils in Korea for different feeding periods(4 weeks or 12 weeks), using Korea sesame oil, perilla oil, rice bran oil and mixed oil. W-3/w-6 ratio of each group was 0.001, 1.44, 0.03 and 0.112, respectively. P/S ratio of each group was 9.64, 10.49, 5.58 and 1.68, respectively. Perilla oil(w-3 rich) increased w-3/w-6 ratio of erythrocyte membrane, decreased the amount of trapped Ca and inhibited the decrease of cell volume. These results indicate that in maybe increase erythroyte fluidity and deformability, and affect erythrocyte function. In conclusion, w-3 rich perilla oil affects erythrocyte feature.

  • PDF

우황청심원이 당뇨병 Rat의 혈액순환장애에 미치는 영향 (The Effect of Woohwangcheongsim-won on Circulatory Disturbance in Diabetes)

  • 황성록;정승현;신길조;이원철
    • 대한한의학회지
    • /
    • 제23권2호
    • /
    • pp.164-179
    • /
    • 2002
  • Object: Death rate due to hypertension, atherosclerosis, ischemic heart disease and cerebral infarction induced by Westernized diet and increased average life span is on the rise. Decrease in blood circulation, activation of thrombus generation and intravascular lipid accumulation, cited as the principal causes of the above mentioned diseases in recent studies, result in circulatory disturbance and blood vessel obstruction leading to ischemic cell death of heart, brain and peripheral vessels. Method: We investigated the biochemical changes in microvascular permeability, aggregation of platelet and the intravascular lipid accumulation in induced-diabetic rat using Streptozotocin. We also studied the effects of Woohwangcheongsirn-won after oral administration on blood circulation, platelet function and lipid metabolism. The results are as follows: I. Woohwangcheongsim-won increased blood circulation in microvessels. 2. Woohwangcheongsim-won increased the reduced erythrocyte deformability in diabetes. 3. Woohwangcheongsim-won induced the reduction of contents of 2, 3-DPG, but failed to affect the reduced contents of ATP in erythrocyte in diabetes. 4. Woohwangcheongsim-won reduced the activity of Ca/sup 2+/-ATPase in the membrane of erythrocyte. 5. Woohwangcheongsim-won reduced the platelet aggregation evoked by platelet agglutinin factor. 6. Woohwangcheongsim-won reduced the production of platelet-derived granules. 7. Woohwangcheongsim-won reduced the production of metabolites of arachidonic acid in diabetes, and also reduced the production of increased thromboxane B2. 8. Woohwangcheongsim-won reduced the synthesis of oxidized LDL-cholesterol. In conclusion, Woohwangcheongsim-won enhanced blood circulation in microvesseles, erythrocyte deformability and inhibited the increased platelet aggregation and the synthesis of oxidized LDL-cholesterol in diabetes. Therefore Woohwangcheongsim-won is believed to positively affect blood circulation (J Korean Oriental Med 2002;23(2):164-179)

  • PDF

Transdermal Delivery of Ceramide Using Sodium Deoxycholate-based Deformable Liposomes

  • Kim, Dong-Chan;Noh, Sang-Myoung;Kim, Young-Bong;Baek, Kwang-Hyun;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권5호
    • /
    • pp.319-323
    • /
    • 2008
  • For transdermal delivery of ceramides, various liposomes formulations were studied and evaluated. Sodium deoxycholate (SDC), Tween 20 and Span 85 were used as edge activators. The skin permeation of ceramides was performed using a Franz cell apparatus with hairless mouse skin. Among edge activators, SDC showed the higher values of deformability index and skin permeation than did others. For optimization of formulations, we varied the ratios of lipids to edge activators and the compositions between phosphatidylcholine (PC) and ceramides. The optimal ratio of lipid to SDC was observed to be 6:1 (w:w) and that of PC and ceramide was 1:1. Our results suggest that the skin permeation of ceramides could be enhanced by optimized deformable formulations of liposomes containing SDC as a major edge activator.