Storage of laboratory animal blood samples causes hemorheological alterations : Inter-species differences and the effects of duration and temperature

  • Nemeth, Norbert (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Baskurt, Oguz K. (Department of Physiology, Akdeniz University, Faculty of Medicine) ;
  • Meiselman, Herbert J. (Department of Physiology, Akdeniz University, Faculty of Medicine) ;
  • Kiss, Ferenc (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Uyuklu, Mehmet (Department of Physiology, Akdeniz University, Faculty of Medicine) ;
  • Hever, Timea (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Sajtos, Erika (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Kenyeres, Peter (First Department of Medicine, University of Pec) ;
  • Toth, Kalman (First Department of Medicine, University of Pec) ;
  • Furka, Istvan (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Miko, Iren (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen)
  • Received : 2009.05.27
  • Published : 2009.06.30

Abstract

Hemorheological results may be influenced by the time between blood sampling and measurement, and storage conditions (e.g., temperature, time) during sample delivery between laboratories may further affect the resulting data. This study examined possible hemorheological alterations subsequent to storage of rat and dog blood at room temperature ($22^{\circ}C$) or with cooling ($4{\sim}10^{\circ}C$) for 2, 4, 6, 24, 48 and 72 hours. Measured hemorheological parameters included hematological indices, RBC aggregation and RBC deformability. Our results indicate that marked changes of RBC deformability and of RBC aggregation in whole blood can occur during storage, especially for samples stored at room temperature. The patterns of deformability and aggregation changes at room temperature are complex and species specific, whereas those for storage at the lower temperature range are much less complicated. For room temperature storage, it thus seems logical to suggest measuring rat and dog cell deformability within 6 hours; aggregation should be measured immediately for rat blood or within 6 hours for dog blood. Storage at lower temperatures allows measuring EI up to 72 hours after sampling, while aggregation must be measured immediately, or if willing to accept a constant decrease, over 24~72 hours.

Keywords

References

  1. Alexy, T., R. B. Wenby, E. Pais, L. J. Goldstein, W. Hogenauer and H. J. Meiselman, 2005, An automated tube-type blood viscometer: validation studies, Biorheology 42, 237-247
  2. Baskurt, O. K., 1996, Deformability of red blood cells from different species studied by resistive pulse shape analysis technique, Biorheology 33, 169-179 https://doi.org/10.1016/0006-355X(96)00014-5
  3. Baskurt, O. K., Mechanisms of blood rheology alterations, 2007, in: Handbook of Hemorheology and Hemodynamics, Baskurt, O. K., M. R. Hardeman, M. W. Rampling and H. J. Meiselman, eds, IOS Press, Amsterdam, The Netherlands, pp. 170-190
  4. Baskurt, O. K., M. Bor-Kucukatay, O. Yalcin and H. J. Meiselman, 2000, Aggregation behaviour and electrophoretic mobility of red blood cells in various mammalian species, Biorheology 37, 417-428
  5. Baskurt, O. K., M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston and J. L. Wautier, 2009, New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcirc. 42, 75-97
  6. Bernat, S. I., L. Bogar, M. Csornai, S. Imre, I. Juricskay, L. Kollar, Z. Novak, Zs. Pecsvarady, E. Pongracz, I. Rozsos and K. Toth, 2005, Modszertani utmutato a haemoreologiai meresek vegzesehez [Guidelines for hemorheological measurements], Erbetegsegek Suppl 1, 27-33
  7. Chien, S., S. Usami, R. J. Dellenback and C. A. Bryant, 1971, Comparative hemorheology – hematological implications of species differences in blood viscosity, Biorheology 8, 35-57
  8. Forconi, S., 1985, [The hemorheological laboratory in clinical medicine: the value and limitations of its methods], Ric. Clin. Lab. 15 Suppl 1, 3-10
  9. Furlanello, T., S. Tasca, M. Caldin, E. Carli, C. Patron, M. Tranquillo, G. Lubas and L. Solano-Gallego, 2006, Artifactual change in canine blood following storage, detected using the ADVIA 120 hematology analyzer, Vet. Clin. Pathol. 35, 42-46 https://doi.org/10.1111/j.1939-165X.2006.tb00087.x
  10. Hardeman, M. R., P. T. Goedhart and S. Shin, 2007, Methods in hemorheology, in: Handbook of Hemorheology and Hemodynamics, Baskurt, O. K., M. R. Hardeman, M. W. Rampling and H. J. Meiselman, eds, IOS Press, Amsterdam, The Netherlands, pp. 242-266
  11. ICSH Expert Panel on Blood Rheology, 1986, Guidelines for measurement of blood viscosity and erythrocyte deformability, Clin. Hemorheol. 6, 439-453
  12. Jung, F., H. Kiesewetter, H. G. Roggenkamp, H. P. Nüttgens, E. B. Ringelstein, M. Gerhards, G. Kotitschke, E. Wenzel and H. Zeller, 1986, [Determination of reference ranges of rheologic parameters: study at 653 randomly selected probands of the Aachen district], Klin. Wochenschr. 64, 375-381 https://doi.org/10.1007/BF01728187
  13. Kenyeres, P., M. Rabai, A. Toth, N. Nemeth, I. Miko, G. Kesmarky, I. Juricskay, T. Alexy and K. Toth, The impact of sample preparation and storage of human blood on measured hemorheological parameters, – submitted for Clin. Hemorheol. Microcirc
  14. Medaille, C., A. Briend-Marchal and J. P. Braun, 2006, Stability of selected hematology variables in canine blood kept at room temperature in EDTA for 24 and 48 hours, Vet. Clin. Pathol. 35, 18-23 https://doi.org/10.1111/j.1939-165X.2006.tb00083.x
  15. Meiselman, H. J., 1978, Rheology of shape-transformed human red cells, Biorheology 15, 225-237
  16. Meiselman, H. J., 1981, Morphological determinants of red blood cell deformability, Scand. J. Clin. Lab. Invest. 41 Suppl. 156, 27-34 https://doi.org/10.3109/00365518109097426
  17. Nemeth, N., A. Gulyas, A. Balint, K. Peto, E. Brath, F. Kiss, I. Furka, O. K. Baskurt and I. Miko, 2006, Measurement of erythrocyte deformability and methodological adaptation for small-animal microsurgical models, Microsurgery 26, 33-37 https://doi.org/10.1002/micr.20207
  18. Neu, B. and H. J. Meiselman, 2007, Red blood cell aggregation, in: Handbook of Hemorheology and Hemodynamics, Baskurt, O. K., M. R. Hardeman, M. W. Rampling and H. J. Meiselman, eds, IOS Press, Amsterdam, The Netherlands, pp. 114-136
  19. Olsen, A. K., E. M. Bladbjerg, A. L. Jensen and A. K. Hansen, 2001, Effect of pre-analytical handling on haematological variables in minipigs, Lab. Anim. 35, 147-152 https://doi.org/10.1258/0023677011911516
  20. Plasenzotti, R., B. Stoiber, M. Posch and U. Windberger, 2004, Red blood cell deformability and aggregation behaviour in different animal species, Clin. Hemorheol. Microcirc. 31, 105-111
  21. Reinhart, W. H. and S. Chien, 1980, Red cell rheology in stomatocyte echinocyte transformation: roles of cell geometry and cell shape, Blood 67, 1110-1118
  22. Schmid-Sch$\ddot{a}$nbein, H., H. Malotta and F. Striesow, 1990, Erythrocyte aggregation: causes, consequences and methods for assessment, Tijdschr NVKC 15, 88-97
  23. Shin, S., Y. Ku, M. S. Park and J. S. Suh, 2005, Slit-flow ektacytometry: laser diffraction in a slit rheometer, Cytometry Part B (Clinical Cytometry) 65, 6-13
  24. Stoltz, J. F., M. Singh and P. Riha, eds, 1999, Hemorheology in Practice, IOS Press, Amsterdam, The Netherlands, pp. 9-52
  25. Tozzi-Ciancarelli, M. G., C. Di Massimo and A. Mascioli, 1992, Aging of human erythrocytes: the role of membrane perturbations induced by in vitro ATP-depletion, Cell. Mol. Biol. 38, 303-310
  26. Udden, M. M., 2000, Rat erythrocyte morphological changes after gavage dosing with 2-butoxyethanol: a comparison with the in vitro effects of butoxyacetic acid on rat and human erythrocytes, J. Appl. Toxicol. 20, 381-387 https://doi.org/10.1002/1099-1263(200009/10)20:5<381::AID-JAT701>3.0.CO;2-E
  27. Udden, M. M., 2002, In vitro sub-hemolytic effects of butoxyacetic acid on human and rat erythrocytes, Toxicol. Sci. 69, 258-264 https://doi.org/10.1093/toxsci/69.1.258
  28. S. Usami, S. Chien and M.I. Gregersen, 1969, Viscometric characteristic of blood of the elephant, man, dog, sheep, and goat, Am. J. Physiol. 217, 884-890
  29. Uyuklu, M., M. Cengiz, P. Ulker, T. Hever, J. Tripette, P. Connes, N. Nemeth, H. J. Meiselman and O. K. Baskurt, 2009, Effects of storage duration and temperature of human blood on red cell deformability and aggregation, Clin. Hemorheol. Microcirc. 41, 269-278
  30. Windberger, U., A. Bartholovitsch, R. Plasenzotti, K. J. Korak and G. Heinze, 2003, Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data, Exp. Physiol. 88, 431-440 https://doi.org/10.1113/eph8802496
  31. Windberger, U., and O. K. Baskurt, 2007, Comparative hemorheology, in: Handbook of Hemorheology and Hemodynamics, Baskurt, O. K., M. R. Hardeman, M. W. Rampling and H. J. Meiselman, eds, IOS Press, Amsterdam, The Netherlands, pp. 267-285
  32. Zhang, J., X. Zhang, N. Wang, Y. Fan, H. Ju, J. Yang, J. Wen and X. Qu, 2004, What is the maximum duration to perform the hemorheological measurement for the human and mammals, Clin. Hemorheol. Microcirc. 31, 157-160