• 제목/요약/키워드: Cell Crack

검색결과 115건 처리시간 0.02초

평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석 (The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell)

  • 박철준;권오헌;강지웅
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

결정질 태양전지 crack 패턴에 따른 전기적 특성 모델링 (The modeling of electrical characteristics with crack pattern in crystalline solar cell)

  • 송영훈;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.239-244
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with crack pattern in crystalline solar cell. crystalline solar cells with a thin substrate, even small shocks can be easily damaged. Before the module goes through many processes, because the solar cells are at risk of a crack. That occurred early in the PV module micro-crack is not easily detection by eye test or output test. Because the EL (Electroluminescence) device has been detected using. PV module is made by laminated of a variety of materials. By different properties of each material will affect the crack. For this reason, the crack will grow and affect the output. And We analyzed the three crack patterns in crystalline solar cell. A growth of cracks on crystalline solar cell was interpreted by analysing generated cracks on the PV modules. Based on this interpretation, an electrical output value was calculated by mathematical modeling on electrical output characteristic with each crack patterns.

  • PDF

무요소법의 적응해석을 위한 반복격자해법 (Iterative Cell-wise Solution Method for the Adaptive Analysis of a Meshless Method)

  • 석병호;임장근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.607-614
    • /
    • 2002
  • For the accurate analysis of crack problems, considerable nodal refinement near the crack tip to capture singular stress field with sufficient accuracy to provide a useful computation of stress intensity factor is required. So, in this paper, adaptive nodal refinement scheme is proposed where nodes in restricted cell regions centered at crack tip are arranged in array for enhanced spatial resolution and adaptivity. With only cell-wise adaptive refinement scheme around crack tip fields, singularity of crack tip is sufficiently described to expect a successive crack propagate direction. Through numerical tests, accuracy of the proposed adaptive scheme is investigated and compared with the finite element and experimental results. By this implementation, it is shown that high accuracy is achieved by using iterative cell-wise solution method fur analyzing crack propagation problems.

  • PDF

결정질 태양전지의 Micro-crack 패턴에 따른 PV모듈의 전기적 특성에 관한 연구 (A Study on the Electrical Characteristics of Photovoltaic Module Depending on Micro-Crack Patterns of Crystalline Silicon Solar Cell)

  • 송영훈;강기환;유권종;안형근;한득영
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.407-412
    • /
    • 2012
  • This study investigated the process of thermal-induced growth of micro-crack developed at the crystalline solar cell using EL image, determined the output characteristic according to the pattern of micro-crack, analyzed the I-V characteristic according to the pattern of crack growth, and predicted the output value using simulation. The purpose of this study was, therefore, to investigate the process of thermal-induced growth of micro-crack developed at the early stage of PV module completion using EL image, to analyze the resulting decrement of output and predict the output value using simulation. It was observed that the crack grew increasingly by the thermal condition, and accordingly the lowering of output was accelerated. The output values of crack patterns with various direction were predicted using simulation, resulting in close I-V curve with only around 4% of error rate. It is considered that it is possible to predict the electric characteristic of solar cell module using only pattern of micro-crack occurred at solar cell based on our results.

제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동 (The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature)

  • 박철준;권오헌;강지웅
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화 (The Variation of Electrical Characteristics of PV Module due to Mechanical Stress)

  • 공지현;지양근;강기환;김경수;유권종;안형근;한득영
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.

기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성 (The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load)

  • 공지현;지양근;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF

Micro-crack Detection in Heterogeneously Textured Surface of Polycrystalline Solar Cell

  • Ko, JinSeok;Rheem, JaeYeol;Oh, Ki-Won;Choi, Kang-Sun
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.23-26
    • /
    • 2015
  • A seam carving based micro-crack detection method is proposed which aims at detecting the micro-crack regions in heterogeneously textured surface of polycrystalline solar cells. By calculating the seam which is a connected path of low energy pixels in the image, the micro-crack regions can be detected. Experimental results show that the proposed seam carving based micro-crack detection method has superior efficiency in detecting the micro-crack without background noise pixels and the algorithm's computation time is less than the conventional algorithm.

발포금속 제조를 위한 석고주형의 특성 (Properties of Plaster Mold for Open Cell Aluminum Foam)

  • 김기영;백남익
    • 한국주조공학회지
    • /
    • 제21권4호
    • /
    • pp.253-259
    • /
    • 2001
  • There are many methods to produce metal foams, which can be classified into three groups according to the state of the starting metal i.e. liquid or powder or solid. Three types of defects such as cell closing, cell deformation or breakdown and cell misrun are thought to be occurred when we make the open cell aluminum foams by precision casting. Filling ability of the mold slurry between preform is related with cell closing, mold collapsibility is related with cell deformation or breakdown, mold temperature and pouring pressure are related with cell misrun. These factors can be evaluated by measuring slurry fluidity, burnout strength and permeability of the mold. Properties of the plaster mold were evaluated to find optimum mold conditions for high quality open cell aluminum foam in this study. Permeability was almost zero independent of burnout conditions, however, crack initiation was found on the surface of all specimens one or two minutes after taking out from the furnace. Crack has grown and disappeared with time. This crack may facilitate the mold filling when molten metal is poured, because of the improved mold permeability. It was considered that crack initiation and disappearance was closely related with temperature difference between the surface and inner part. Knocking-out the mold is a difficult problem due to the small cell size, because continuous mesh structure of the metal foam is not strong. It is not easy to remove molding material after pouring. We can expect that water quenching can facilitate the knocking-out the mold after solidification without damaging cell structures. Collapsed particles after water quenching became bigger with the increase in time.

  • PDF

열충격 시험 후 태양전지 파괴 모드에 따른 전기적 특성변화 (Electric Degradation of Failure Mode of Solar Cell by Thermal Shock Test)

  • 강민수;전유재;신영의
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.327-332
    • /
    • 2013
  • 일본 연구에서는 열충격 시험을 통한 태양전지의 파괴모드에 따른 전기적 특성을 분석하였다. 시편은 Photovoltaic Module을 만들기 전 3 line Ribbon을 Tabbing한 단결정 Solar Cell을 제작하였다. 열충격 시험 Test 1의 온도조건은 저온 $-40^{\circ}C$, 고온 $85^{\circ}C$, Test 2는 저온 $-40^{\circ}C$, 고온 $120^{\circ}C$에서 Ramping Time을 포함하여 각각 15분씩, 총 30분을 1사이클로 500사이클을 각각의 조건으로 수행하였다. 열충격 시험 후 Test 1에서는 4.0%의 효율 감소율과 1.5%의 Fill Factor 감소율을 확인하였으며, Test 2에서는 24.5%의 효율 감소율과 11.8%의 Fill Factor 감소율을 확인하였다. EL(Electroluminescence)촬영 및 단면을 분석한 결과, Test 1과 Test 2 시편 모두 Cell 표면 및 내부에서의 Crack이 발견되었다. 하지만, Test 2의 시험이 Test 1보다 가혹한 온도조건의 시험으로 인해 Test 1에서 나타나지 않았던, Cell 파괴를 Test 2에서 확인하였다. 결국, Test 1에서 효율의 직접적인 감소 원인은 Cell 내부에서의 Crack이며, Test 2에서는 Cell 내부에서의 Crack 및 Cell 파괴로 인한 Cell 자체의 성능저하로 효율이 크게 감소한다는 것을 본 실험을 통하여 규명하였다.