• Title/Summary/Keyword: Cell Coverage

Search Result 281, Processing Time 0.022 seconds

Complete Coverage Path Planning for Multi-Robots (멀티로봇에 대한 전체영역 경로계획)

  • Nam, Sang-Hyun;Shin, Ik-Sang;Kim, Jae-Jun;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.73-80
    • /
    • 2009
  • This paper describes a path planning algorithm, which is the minimal turning path based on the shape and size of the cell to clean up the whole area with two cleaning robots. Our method divides the whole cleaning area with each cell by cellular decomposition, and then provides some path plans among of the robots to reduce the rate of energy consumption and cleaning time of it. In addition we suggest how to plan between the robots especially when they are cleaning in the same cell. Finally simulation results demonstrate the effectiveness of the algorithm in an unknown area with multiple robots. And then we compare the performance index of two algorithms such as total of turn, total of time.

Assessment of Appropriateness of Criteria for Insurance Coverage on Systemic Therapy used in Renal Cell Carcinoma (신세포암에 사용되는 전신 항암요법의 요양급여기준에 관한 고찰)

  • Kim, Jeong-Yeon;Park, Eun-Ji;Bae, Min-Kyung;Yoon, Jeong-Hyun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.4
    • /
    • pp.319-331
    • /
    • 2011
  • Purpose: The purpose of this study is to evaluate current criteria for insurance coverage by Health Insurance Review & Assessment Service (HIRA) on the systemic therapy used in the treatment of advanced or metastatic renal cell carcinoma (RCC), by reviewing all available clinical evidences including a variety of clinical practice guidelines. Methods: We searched clinical databases and collected data from published phase 1 through 3 randomized clinical trials on all systemic therapies used in RCC, including novel targeted therapies. Additionally, current clinical practice guidelines on the management of kidney cancer or RCC were reviewed. Based on the collected data we evaluated the appropriateness of the HIRA criteria for insurance coverage on the systemic therapy of RCC whether they are evidence-based and up to date. Results: On the basis of the collected data we concluded that there was a need for a revision in HIRA criteria for systemic therapy of RCC. Despite recent emerging therapeutic advances and changes in therapeutic strategies of management of RCC, some of anticancer regimens were inappropriately listed even though they were not proven to provide efficacy or safety superior to those of other therapies. We thus proposed an updated recommendation based on current clinical evidences. Conclusion: Systemic therapy of RCC is being rapidly changed with the advancement of understanding of the molecular biology of cancer. Consequently newly developed targeted therapies are becoming the standard therapy in the management of medically or surgically unresectable advanced or metastatic RCC. To provide effective and safe therapy to patients with RCC, the criteria for insurance coverage should be made carefully taking into consideration of most up-to-date and high-quality clinical evidences, and should be continuously reviewed so as to reflect evidence-based clinical practice.

Coverage and Energy Modeling of HetNet Under Base Station On-Off Model

  • Song, Sida;Chang, Yongyu;Wang, Xianling;Yang, Dacheng
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.450-459
    • /
    • 2015
  • Small cell networks, as an important evolution path for next-generation cellular networks, have drawn much attention. Different from the traditional base stations (BSs) always-on model, we proposed a BSs on-off model, where a new, simple expression for the probabilities of active BSs in a heterogeneous network is derived. This model is more suitable for application in practical networks. Based on this, we develop an analytical framework for the performance evaluation of small cell networks, adopting stochastic geometry theory. We derive the system coverage probability; average energy efficiency (AEE) and average uplink power consumption (AUPC) for different association strategies; maximum biased received power (MaBRP); and minimum association distance (MiAD). It is analytically shown that MaBRP is beneficial for coverage but will have some loss in energy saving. On the contrary, MiAD is not advocated from the point of coverage but is more energy efficient. The simulation results show that the use of range expansion in MaBRP helps to save energy but that this is not so in MiAD. Furthermore, we can achieve an optimal AEE by establishing an appropriate density of small cells.

Coverage Evaluation of mmWave Small Cell in Outdoor Environment (실외환경에서 밀리미터파 소형 셀의 커버리지 측정)

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.162-165
    • /
    • 2017
  • In an effort to compensate the rising of the data throughput demand nowadays, there have been many research works to optimize the radio resource and increase the capacity of the network. At the present, small cell network, mmWave band and beamforming technology are leading the trend and becoming the core solutions of the fifth generation (5G) cellular networks. Since the propagation characteristics of radio wave in the mmWave band is quite different from the conventional bands, the communication systems which work in these bands have to be redesigned. In this paper, a 3D simulation model is discussed for cellular network at 60 GHz in outdoor environments. Coverage analysis and system performance is carried out for a small cell system in the typical urban environment including street canyon simulation scenario. In addition, the beamforming technique is considered to evaluate the throughput improvement. Simulation results show that the mmWave small cell systems is expected to be one of the major candidate technologies to satisfy the requirements of 5G in terms of data rate.

Design of Uplink Initial Ranging Algorithm for Large-Cell Coverage Fixed Wireless Communication System (광범위 고정형 무선 통신 시스템을 위한 상향 링크 초기 레인징 기법 설계)

  • Lee, Kyung-Hoon;Hwang, Won-Jun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.569-580
    • /
    • 2012
  • In this paper, an enhanced initial ranging algorithm for large-cell coverage fixed wireless communication system is proposed. In typical wireless communication system such as WiBro, because a round-trip delay between a transmitter and a receiver is within one OFDM (Orthogonal Frequency Division Multiplexing) symbol duration, a frequency-domain differential correlation method is generally used. However, the conventional method cannot be applied due to an increase of a maximum time delay in large-cell system. In case of an accumulative differential method, estimation errors can occur because of frequent sign transitions. In this paper, therefore, we propose an algorithm which can estimate a total timing offset in a ranging channel structure for 15 km cell. The proposed method can improve performance by sign comparison based sign error correction rule between the estimated values and using a weighting scheme based on channel correlation, the number of accumulations, and the noise reduction effect in normalization process. Also, it can estimate the integer timing offset of symbol duration by comparing peak-powers after compensating for the fractional timing offset of symbol duration.

Joint Coverage and Radio Resource Management Scheme for Cellular CDMA Systems (셀룰러 CDMA 시스템에서 커버리지와 무선자원의 결합형 관리 기법)

  • Youm, Dong-Hwa;Kim, Min-Jo;Kang, Hang-Soon
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.115-118
    • /
    • 2004
  • An abrupt increase of traffic-load in cellular CDMA systems can cause overload and degrade the quality of service (QoS) due to the insufficient radio resources. In this paper, we propose a joint coverage and resource management (JCRM) scheme which can improve the QoS degradation and spectrum utilization. The JCRM scheme hands over overloaded traffic to the neighboring cells by virtually reducing a heavily loaded cell coverage and allocates radio resources based on the necessary handover probability. The proposed scheme can be applied to the existing cellular CDMA systems as well as adaptive coverage management schemes for next generation mobile communication systems.

  • PDF

No Blind Spot: Network Coverage Enhancement Through Joint Cooperation and Frequency Reuse

  • Zhong, Yi;Qiao, Pengcheng;Zhang, Wenyi;Zheng, Fu-chun
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.773-783
    • /
    • 2016
  • Both coordinated multi-point transmission and frequency reuse are effective approaches to mitigate inter-cell interference and improve network coverage. The motivation of this work is to explore the manner to effectively utilize the spectrum resource by reasonably combining cooperation and frequency reuse. The $Mat{\acute{e}}rn$ cluster process, which is appropriate to model networks with hot spots, is used to model the spatial distribution of base stations. Two cooperative mechanisms, coherent and non-coherent joint transmission (JT), are analyzed and compared. We also evaluate the effect of multiple antennas and imperfect channel state information. The simulation reveals that the proposed approach to combine cooperation and frequency reuse is effective to improve the network coverage for users located at both the center and the boundary of the cooperative region.

System Capacity and Coverage Analysis of Hierarchical Femtocell Networks (펨토셀 기반 계층셀 구조 시스템 용량 및 서비스 반경 분석)

  • O, Nam-Geol;Kim, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.476-483
    • /
    • 2009
  • Recently much attention has been devoted to femtocell's potential to improve indoor cellular coverage and high speed wireless communications. Femtocell based commercial services have been already launched in some countries and standardization activities are actively on-going, there has been concern however over potential issues of interference between femtocells and the micro/macro networks. With universal frequency reuse, the ensuing cross-tier interference causes unacceptable data rate and outage probability, so an analysis of effect of interference in femtocell embedded networks would be necessary for a stable system design. This paper investigates the effect of interference on system performances of femtocell embedded hierarchical cell structure (HCS) networks considering the characteristics of propagation environments. Various channel parameters are specially considered for indoor environments where most of femtocells are deployed to investigate the effect of interference of femtocell embedded RCS networks. System capacity and coverage are provided with variant distance between macrocell and femtocell, location of the user in femtocell coverage, and characteristic of building structures.

Analysis on the Cell Capacity and Coverage of 3GPP systems (3GPP 시스템의 용량과 셀 커버리지 분석)

  • 양하영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1461-1472
    • /
    • 2000
  • Recently, the mobile users seem to be rapidly increasing and then the capacity limit will be reached at close hand. In these situations, to provide them with good quality of service in the coming future, newly planned cell design is needed. In the next generation mobile communication systems, namely IMT-2000, good quality services will be possible only by designing the cell structure hierarchically with the help of appropriate cell planning. In the research process, the standardization reports on the future mobile cellular IMT-2000 system (3GPP) are investigated and the parameters, that are essential to cell planning, are also researched. Modeling of IMT-2000 radio link and the numerical analysis on that make it possible to calculate the forward/reverse link budget, system capacity call blocking probability Erlang capacity and cell coverage. In planning the cell of IMT-2000 system, various parameters are considered, such as hierarchical cell structure, number of users, data service forms and propagation area environments. From the results, efficient cell planning methods are proposed. Through this thesis efficient cell planning and maximum capacity will be achieved in the beginning of commercial IMT-2000 service.

  • PDF

Capacity and Coverage according to Calculations of the Erlang Capacity in the Reverse Link of a DS/CDMA System (DS/CDMA 시스템의 역방향 링크에서 얼랑용량 계산에 따른 사용자 수와 셀 커버리지)

  • Kwon, Young-Soo;Kim, Hang-Rae;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.947-955
    • /
    • 2002
  • In this paper, we derive an outage probability for the Erlang capacity and the link margin respectively, calculate them with the same parameters and outage probability, and then analyze a capacity and cell coverage in city, suburban, and open area. So, the Erlang capacity is more real than in a cell, and the cell coverage can be calculated with high reliability by the margin. When the $E_b/N_o$ decreases from 7 dB to 5 dB within the outage probability of 5 %, it is observed that the capacity is increased from 18 Erlang to 31 Erlang with the same margin of 2.8 dB, then the coverage is increased to 0.4 km, 1 km, and 2.5 km in city, suburban, and open area respectively. Also if the outage probability is decreased from 5 % to 2 % in case of $E_b/N_o$ of 5 dB, the result shows a very reliable link with additional increment of 0.88 dB in the margin and a high QoS (quality of service) within decrement of 0.15 km, 0.5 km, and 1.5 km for the same areas with decrement of 3 Erlang from 31 Erlang.