• Title/Summary/Keyword: Cell Coverage

Search Result 281, Processing Time 0.022 seconds

Effect of Soft Handoff Technique on CDMA Cell Coverage in a Lognormally Shadowed Channel (전파음영 채널 환경에서 소프트 핸드오프 기법이 CDMA 셀룰러 시스템의 셀 커버리지에 미치는 영향)

  • Oh, Hyon-Kyu;Kim, Hang-Rae;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.871-881
    • /
    • 2001
  • In this paper, the effect of soft handoff technique on CDMA cell coverage is analyzed in a lognormally shadowed channel, which uses the Hata propagation model, Also, the rate of increase for the cell coverage is analyzed by calculating the hard and soft handoff margin. When the outage probability is 0.02 and the standard deviation of the received signal is 2.5 dB in a lognormally shadowed channel, the transmit power of the mobile station which is located in the cell boundary is increased by the hard handoff margin of 5.13 dB and by the soft handoff margin of 3.68 dB, respectively. So, the rate of increase for the cell coverage is 1.39 in case of using the soft handoff technique. It is shown that if the (E$\_$b//N$\_$0/)$\_$req/ value is 7 dB, the cell coverage of the CDMA cellular system with soft handoff technique in city area is 3.33 km in case of the 850 MHz frequency and 1.36 km in case of the 1900 MHz frequency. Also, the accurate cell coverage with soft handoff technique is supported that could be serviced by the base-station in CDMA cellular system.

  • PDF

Cell Coverage Based on Calculation of the Voice-Data Erlang Capacity in a WCDMA Reverse Link with Multi-rate Traffic (WCDMA 역방향 링크에서 다중속도 트래픽에 따른 음성/데이터 얼랑용량 계산과 셀 커버리지)

  • Kwon, Young-Soo;Han, Tae-Young;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.387-396
    • /
    • 2004
  • A scheme to evaluate the number of users and cell coverage of a WCDMA supporting multi-rate traffic is newly presented through calculation of the realizable Erlang capacity from a derived blocking probability and the path loss from the COST231 Walfisch-Ikegami(W) model. We evaluate the voice-data Erlang capacities at various data rates of 15 kbps to 960 kbps and it is shown that they have a linear relationship to each other. When the E$\_$b//N$\_$o/ is low from 4 ㏈ to 3 ㏈ in case of voice capacity of 50 Erlang at 8 kbps, the result shows the increase for the data capacity of 10 Erlang and the enlargement of 100 m for the cell coverage at low rate of 15 kbps, and the increase of 0.11 Erlang and the enlargement of 40 m at high rate of 960 kbps. The increase of the blocking probability results in the increase of the Erlang capacity, but not an effect on the cell coverage, and the increase of active users in a cell results in the decrease of the coverage.

Distributed File Placement and Coverage Expansion Techniques for Network Throughput Enhancement in Small-cell Network (소형셀 네트워크 전송용량 향상을 위한 분산 파일저장 및 커버리지 확장 기법)

  • Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.183-189
    • /
    • 2018
  • This paper proposes distributed file placement and coverage expansion techniques for mitigating the traffic bottleneck in backhaul for small-cell networks. In order to minimize the backhaul load with limited memory space, the proposed scheme controls the coverage and file placement of base station according to file popularity distribution and memory space of base stations. In other words, since the cache hit ratio is low when there is small memory capacity or widespread file popularity distribution, the base stations expand its coverage and cache different set of files for the user located in overlapped area to exploit multiple cached file sets of base stations. Our simulation results show that the proposed scheme outperforms the conventional cache strategy in terms of network throughput when there is small memory capacity or widespread file popularity distribution.

Band engineering of bilayer graphene by metal atoms: First-principles calculations

  • Oh, D.H.;Shin, B.G.;Ahn, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.267-267
    • /
    • 2010
  • The continuous change in the electronic band structure of metal-adsorbed bilayer graphene was calculated as a function of metal coverage using first-principles calculations. Instead of modifying the unit cell size as a function of metal coverage, the distance between the metal atoms and bilayer graphene in the same $2{\times}2$ unit unit cell was controlled to change the total charges transferred from the metal atoms to bilayer graphene. The validity of the theoretical method was confirmed by reproducing the continuous change in the electronic band structure of K-adsorbed epitaxial bilayer graphene, as shown by Ohta et al. [Science 313, 951 (2006)]. In addition, the changes in the electronic band structures of undoped, n-type, and p-type bilayer graphene were studied schematically as a function of metal coverage using the theoretical method.

  • PDF

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.

Performance Analysis of Mobile Internet System in Inter-cell Interference Environment (인접 셀 간섭 환경에서 모바일 인터넷 시스템의 성능 분석)

  • Roh, Jae-Sung;Kim, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.96-102
    • /
    • 2012
  • The goal of mobile internet system is to provide a high-data-rate, low-latency and optimized packet radio access technology supporting flexible bandwidth deployments. Therefore, network architecture is designed with the goal to support packet-switched traffic with seamless mobility, quality of service and minimal latency. An important requirement for the mobile internet system is improved cell-edge BER performance and data throughput. This is to provide some level of service consistency in terms of geographical coverage as well as in terms of available data throughput within the communication coverage area. In a cellular system, however, the signal to interference plus noise power ratio gap between cell-center and cell-edge users can be of the order of 20 [dB]. The disparity can be even higher in a communication coverage limited cellular system. This leads to vastly lower data throughputs for the cell-edge users relative to cell-center users creating a large QoS gap. This paper proposes a analytical approach that tries to reduce inter-cell interference, and shows the SIR and BER performance according to the OFDM system parameters in mobile Internet environment.

A Novel Power-Efficient BS Operation Scheme for Green Heterogeneous Cellular Networks

  • Kim, Jun Yeop;Kim, Junsu;Kang, Chang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1721-1735
    • /
    • 2016
  • Power-efficient base station (BS) operation is one of the important issues in future green cellular networks. Previously well-known BS operation schemes, the cell zooming scheme and the cell wilting and blossoming scheme, require tight cooperation between cells in cellular networks. With the previous schemes, the non-cooperative BSs of a serving cell and neighboring cells could cause coverage holes between the cells, thereby seriously degrading the quality of service as well as the power saving efficiency of the cellular networks. In this paper, we propose a novel power-efficient BS operation scheme for green downlink heterogeneous cellular networks, in which the networks virtually adjust the coverage of a serving macrocell (SM) and neighboring macrocells (NMs) without adjusting the transmission power of the BSs when the SM is lightly loaded, and the networks turn off the BS of the SM when none of active users are associated with the SM. Simulation results show that our proposed scheme significantly improves the power saving efficiency without degrading the quality of service (e.g., system throughput) of a downlink heterogeneous LTE network and outperforms the previous schemes in terms of system throughput and power saving efficiency. In particular, with the proposed scheme, macrocells are able to operate independently without the cooperation of a SM and NMs for green heterogeneous cellular networks.

Joint Coverage and Radio Resource Management Scheme for Cellular CDMA Systems (셀룰러 CDMA 시스템을 위한 커버리지와 무선자원의 결합형 관리 기법)

  • Youm Dong Hwa;Uh Yoon;Kang Chang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1139-1146
    • /
    • 2004
  • An abrupt increase of traffic-load in cellular CDMA systems can cause overload, as a result, degrade the quality of service (QoS) and the spectrum utilization due to lacking radio resources in base stations. In this paper, we propose a joint coverage and resource management (JCRM) scheme which can improve the QoS degradation and the spectrum utilization. The JCRM scheme hands over the overloaded traffic to neighboring cells by virtually reducing overloaded cell coverage and extending neighboring cell coverage, as well the scheme allocates radio resources based on the necessary handover probability. The proposed scheme can be applied to the existing cellular CDMA systems as well as adaptive coverage management schemes for next generation mobile communication systems.

A Study of Coverage Extension and Minimum Deployment Cost in NBTC and WBTC Structures based WiBro System Using Multi-hop Relay (NBTC와 WBTC 구조를 갖는 WiBro 시스템에서 멀티홉 중계기를 이용한 커버리지 확장과 최소 설치비용 연구)

  • Kim, Se-Jin;Kim, Seung-Yeon;Lee, Byung-Bog;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.911-918
    • /
    • 2008
  • In this paper, we propose new cell structures using multi-hop Relay Station(RS) based on IEEE802.16j in Narrow-Beam Trisector Cell (NBTC) and Wide-Beam Trisector Cell (WBTC), which are two methods for cell sectorization using 3-sector directional antennas. Then, we analyze our proposed structures compared with the existing system which does not use any RS about the numbers of optimized Base Station (BS) and multi-hop relay, the extended BS coverage, and the deployment cost according to the traffic density using optimization model. According to the results, we know the reduction of total deployment cost of the proposed systems and that WBTC is suitable when the traffic density is high and NBTC is suitable when the traffic density is low in our proposed multi-hop based NBTC and WBTC structures.

Dynamic Fractional Frequency Reuse based on an Improved Water-Filling for Network MIMO

  • M.K, Noor Shahida;Nordin, Rosdiadee;Ismail, Mahamod
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2124-2143
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A) systems, Inter-cell Interference (ICI) is a prominent limiting factor that affects the performance of the systems, especially at the cell edges. Based on the literature, Fractional Frequency Reuse (FFR) methods are known as efficient interference management techniques. In this report, the proposed Dynamic Fractional Frequency Reuse (DFFR) technique improved the capacity and cell edge coverage performance by 70% compared to the Fractional Frequency Reuse (FFR) technique. In this study, an improved power allocation method was adopted into the DFFR technique to reach the goal of not only reducing the ICI mitigation at the cell edges, but also improving the overall capacity of the LTE-A systems. Hence, an improved water-filling algorithm was proposed, and its performance was compared with that of other methods that were considered. Through the simulation results and comparisons with other frequency reuse techniques, it was shown that the proposed method significantly improved the performance of the cell edge throughput by 42%, the capacity by 75%, and the coverage by 80%. Based on the analysis and numerical expressions, it was concluded that the proposed DFFR method provides significant performance improvements, especially for cell edge users.