• Title/Summary/Keyword: Cell Characterization

Search Result 1,782, Processing Time 0.027 seconds

Establishment and Characterization of Canine Mammary Gland Cancer Cell Lines (개 자연발생 유선종양 2종의 세포주 확립 및 특성분석)

  • Lee, Sun-Tae;Kweon, Oh-Kyeong;Kim, Wan-Hee
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.232-239
    • /
    • 2010
  • Two cell lines derived from spontaneous canine mammary gland tumors were established and characterized. Mammary gland tumors from 9 years old pug and 9 years old toy-poodle dogs were collected by aseptic surgical resection and primary culture was performed. The histopathologic examination of tumors revealed adenocarcinoma and complex carcinoma and two dogs died from metastasis of the tumors. The tumor cells were subcultured over 60 times for more than 1 year and morphological consistency maintained. Light microscopic examination, growth curve, doubling time calculation, xenotransplantation to female nude mice, immunohistochemistry for wide spectrum keratin, vimentin, $\alpha$-smooth muscle actin and cytokeratin 8 was performed for characterization. The cell lines exhibited polygonal, elongated cell shape and cytoplasmic bridge and doubling time of 47.1 hrs and 18.6 hrs, respectively. Subcutaneous xenotransplantation to nude mice of the cells produced localized palpable mass within 4 weeks in 4 of 5 and 5 of 5 nude mice, respectively. In immunohistochemical examination one cell line showed strong positive against wide spectrum keratin and cytokeratin 8 and the other cell line showed strong positive against smooth muscle actin and cytokeratin 8. Additional characterization would be possible by investigator's needs and the cell lines may be useful for in vivo and in vitro studies of canine mammary tumor and adjuvant therapies.

Fabrication and Characterization of Thermally Actuated Bimorph Probe for Living Cell Measurements with Experimental and Numerical Analysis

  • Cho Young-Hak;Kang Beom-Joon;Hong Seok-Kwan;Kang Jeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.297-309
    • /
    • 2006
  • This paper deals with a novel structure for single-cell characterization which makes use of bimorph micro thermal actuators combined with electrical sensor device and integrated microfluidic channel. The goal for this device is to capture and characterize individual biocell. Quantitative and qualitative characteristics of bimorph thermal actuator were analyzed with finite element analysis methods. Furthermore, optimization for the dimension of cantilevers and integrated parallel probe systems with microfluidic channels is able to be realized through the virtual simulation for actuation and the practical fabrication of prototype of probes. The experimental value of probe deflection was in accordance with the simulated one.

Characterization of haemocytes in the surf clam Mactra veneriformis

  • Yu, Jin-Ha;Park, Kyung-Il;Park, Sung-Woo
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.305-316
    • /
    • 2009
  • Haemocyte characterization in the surf clam, Mectra veneriformis was carried out based on morphological, cytochemical, and phagocytic characteristics. The haemocytes were classified into two cell types, granulocytes and agranulocytes on the basis of presence of cytoplasmic granules. Granulocytes were then classified again into 2 types, large eosinophilic granulocytes and small eosinophilic granulocytes after staining with May-Grünwald Giemsa. In electron microscopy, both types of granulocytes contained electron-dense and electron-lucent cytoplasmic granules. Agranulocytes (hyalinocytes) were also divided into two cell types, large agranulocytes and small agranulocytes based on their sizes. Both cell types did not have granules in cytoplasm. Granulocyte and agranulocyte were negative for the enzyme activities of alkaline phosphatase, peroxidase, and $\beta$-glucuronidase but positive for phenoloxidase and acid phosphatase activities. Both types of haemocytes have phagocytic activity, with the exception of small agranulocyte, and granulocytes seemed more active in this respect than agranulocytes. This present study is the first study to characterize haemocytes of M. veneriformis.

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2227-2230
    • /
    • 2008
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen accumulates in anode recirculation system and excessive buildup of nitrogen in the recirculating anode gas lowers the hydrogen concentration and finally affects the performance of fuel cell stacks. In this study, characterization of nitrogen gas crossover was investigated in PEM fuel cell stacks. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen at the exit of anode. Results show that anode and cathode stoichiometric number ($SR_c$) have a big effect of nitrogen crossover.

  • PDF

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy (Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석)

  • Heo, Jinhee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

Characterization of Photoinduced Current in Poly-Si Solar Cell by Employing Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.35-38
    • /
    • 2012
  • In this study, we have attempted to characterize the photovoltaic effect in real-time measurement of photoinduced current in a poly-Si-based solar cell using photoconductive atomic force microscopy (PC-AFM). However, the high contact resistance that originates from the metal-semiconductor Schottky contact disturbs the current flow and makes it difficult to measure the photoinduced current. To solve this problem, a thin metallic film has been coated on the surface of the device, which successfully decreases the contact resistance. In the PC-AFM analysis, we used a metal-coated conducting cantilever tip as the top electrode of the solar cell and light from a halogen lamp was irradiated on the PC-AFM scanning region. As the light intensity becomes stronger, the current value increases up to $200{\mu}A$ at 80 W, as more electrons and hole carriers are generated because of the photovoltaic effect. The ratio of the conducting area at different conditions was calculated, and it showed a behavior similar to that generated by a photoinduced current. On analyzing the PC-AFM measurement results, we have verified the correlation between the light intensity and photoinduced current of the poly-Si-based solar cell in nanometer scale.

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho;Lee, Ji Won;Kim, JunHo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1794-1798
    • /
    • 2018
  • We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.