• Title/Summary/Keyword: Cell Assignment

Search Result 87, Processing Time 0.025 seconds

Design and VLSI Implementation of Reassembly Controller for ATM/AAL Layer (ATM/AAL 처리를 위한 재조립 처리기의 설계 및 VLSI 구현)

  • 박경철;심영석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.369-378
    • /
    • 2003
  • This paper presents design and VLSI implementations of a reassembly processor for ATM/AAL. The assembly processor is responsible for processing ATM cells from the receive physical interface. It controls the transfer of the AAL payload to host memory and performs all necessary SAR and CPCS checks. We propose the improved structure of cell identification algorithm and smart scatter method for host memory management. The proposed cell identification algorithm quickly locates the appropriate reassembly VC table based on the received VPI./VCI channel value in the ATM header. The cell identification algorithm also allow complete freedom in assignment of VCI/VPI values. The reassembly processor uses a smart scatter method to write cell payload data to host memory. It maintains the scatter operation and controls the incoming DMA block during scatter DMA to host memory. The proposed reassembly processor can perform reassembly checks on AAL. OAM cell. For an AAL5 connection, only CPCS checks, including the CRC32, are performed. In this paper, we proposed a practical reassembly architecture. The design of reassembly processor has become feasible using 0.6${\mu}{\textrm}{m}$ CMOS gate array technology.

A Study on the Bandwidth Assignment Scheme for Video Data Using Dynamic Parameters in the Wireless ATM Networks (무선 ATM망에서 동적 변수를 이용한 비디오 데이터의 대역폭 할당방식에 대한 연구)

  • Jang, Dong-Hyeok;Kim, Seung-Hwan;Lee, Sun-Sook;Kwon, Oh-Seok
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.73-78
    • /
    • 2002
  • In WATM networks, in order to perform dynamic slot allocation required slots of mobile terminals are estimated based on DP (Dynamic Parameter) reflecting characteristics of traffic. In VBR (Variable Bit Rate) traffic, slot allocation is done at MT considering both time-dependent characteristics and QoS (Quality of Service) requirements. In this paper, DPs-buffer state information and buffer state change-are transmitted through in-band signaling. BS (Base Station) performs dynamic slot allocation considering traffic characteristics of each MT (Mobile Terminal), in other words, buffer state information informs the potentiality of 'buffer full state'to BS if MT buffer is over the specific threshold value and buffer state change notifies change in buffer state of incoming cells to MT. If buffer state information is equal to 'low (more than threshold)' and 'abrupt increase' it generates 'buffer full' state cell transmission delay or cell loss might occur. At this time BS should assign additional slots to MT, and then MT consumes cells in its buffer. In simulation, the proposed scheme shows better performance in cell delay and loss than EPSA (Estimation-Prorated Slot Assignment) in-band scheme.

A Handoff Improvement Method of High Speed Mobile Host to use LiFA (LIFA를 이용한 고속 이동체의 핸드오프 개선 방안)

  • 김동근;정상운;김상복;김용수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.105-113
    • /
    • 2003
  • In CDMA cellular system, inefficient Channel assignment for high-speed mobile host increase call blocking probability For it has been method proposed to guarantee QoS upon tn the speed of hierarchical cell that is allocated Queues and dedicated channels of high speed mobile host's speed. In this paper, We allocated the dedicated channel of high-speed handoff In FA (Foreign Agent), only if the receive signal strength of mobile host in current cell that there is low traffic in HA (Home Agent). also, we created new Circular queue LiFA (Limited Foreign Agent) for high-speed handoff call that signal strength is weak in certain FA, and had this High-speed handoff call to be ready for Life time to the new Circular queue LiFA. Thus improve the rate of the forced call termination.

  • PDF

Studies on the Concentrations of K, Na and Reduced Glutathione in Red Blood Cells of Jindo Dogs (진도견의 적혈구내 K, Na 및 reduced glutathione 함량에 관한 조사)

  • ;;;;;;;Osamu Yamato;Yoshimitsu Maede
    • Journal of Veterinary Clinics
    • /
    • v.16 no.2
    • /
    • pp.272-275
    • /
    • 1999
  • Generally, it is known that the composition of the cation of the dog's RBCs is high in potassium(K) and low in sodium(Na). However, it is reported that certain kinds of dogs have HK, HG phenotype which contains a large amount of reduced glutathione(GSH) by the effect of Na-K pump on the cell membrane of RBC with high concentration of K and low concentration of Na. Although this HK phenotype is not regarded as a disease, it is supposed to be an important assignment to examine the distribution and the occurrence rate of the dogs that contain HK cell in their RBCs for the proper clinical treatments as these HK dogs are very sensitive to aromatic disul-fide or onions and have a tendency to cause hemolysis. Accordingly, present study was performed to measure the concentration of K, Na and GSH in the RBCs of Jindo dogs and that of Dosa dogs at the same time.

  • PDF

Analysis of Combined Yeast Cell Cycle Data by Using the Integrated Analysis Program for DNA chip (DNA chip 통합분석 프로그램을 이용한 효모의 세포주기 유전자 발현 통합 데이터의 분석)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.538-546
    • /
    • 2001
  • An integrated data analysis program for DNA chip containing normalization, FDM analysis, various kinds of clustering methods, PCA, and SVD was applied to analyze combined yeast cell cycle data. This paper includes both comparisons of some clustering algorithms such as K-means, SOM and furry c-means and their results. For further analysis, clustering results from the integrated analysis program was used for function assignments to each cluster and for motif analysis. These results show an integrated analysis view on DNA chip data.

  • PDF

Interference Management by Vertical Beam Control Combined with Coordinated Pilot Assignment and Power Allocation in 3D Massive MIMO Systems

  • Zhang, Guomei;Wang, Bing;Li, Guobing;Xiang, Fei;lv, Gangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2797-2820
    • /
    • 2015
  • In order to accommodate huge number of antennas in a limited antenna size, a large scale antenna array is expected to have a three dimensional (3D) array structure. By using the Active Antenna Systems (AAS), the weights of the antenna elements arranged vertically could be configured adaptively. Then, a degree of freedom (DOF) in the vertical plane is provided for system design. So the three-dimension MIMO (3D MIMO) could be realized to solve the actual implementation problem of the massive MIMO. However, in 3D massive MIMO systems, the pilot contamination problem studied in 2D massive MIMO systems and the inter-cell interference as well as inter-vertical sector interference in 3D MIMO systems with vertical sectorization exist simultaneously, when the number of antenna is not large enough. This paper investigates the interference management towards the above challenges in 3D massive MIMO systems. Here, vertical sectorization based on vertical beamforming is included in the concerned systems. Firstly, a cooperative joint vertical beams adjustment and pilot assignment scheme is developed to improve the channel estimation precision of the uplink with pilots being reused across the vertical sectors. Secondly, a downlink interference coordination scheme by jointly controlling weight vectors and power of vertical beams is proposed, where the estimated channel state information is used in the optimization modelling, and the performance loss induced by pilot contamination could be compensated in some degree. Simulation results show that the proposed joint optimization algorithm with controllable vertical beams' weight vectors outperforms the method combining downtilts adjustment and power allocation.

Design of a High-Speed Data Packet Allocation Circuit for Network-on-Chip (NoC 용 고속 데이터 패킷 할당 회로 설계)

  • Kim, Jeonghyun;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.459-461
    • /
    • 2022
  • One of the big differences between Network-on-Chip (NoC) and the existing parallel processing system based on an off-chip network is that data packet routing is performed using a centralized control scheme. In such an environment, the best-effort packet routing problem becomes a real-time assignment problem in which data packet arriving time and processing time is the cost. In this paper, the Hungarian algorithm, a representative computational complexity reduction algorithm for the linear algebraic equation of the allocation problem, is implemented in the form of a hardware accelerator. As a result of logic synthesis using the TSMC 0.18um standard cell library, the area of the circuit designed through case analysis for the cost distribution is reduced by about 16% and the propagation delay of it is reduced by about 52%, compared to the circuit implementing the original operation sequence of the Hungarian algorithm.

  • PDF

고삼투압이 재조합 Erythropoietin의 생산과 당쇄구조에 미치는 효과

  • Jeong, Yeon-Tae;Kim, Jeong-Hoe
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.221-224
    • /
    • 2001
  • Effect of hyperosmotic pressure on growth of recombinant Chinese hamster 。 vary cells and Erythropoietin (EPO) production was investigated. Cells were cultivated in batch modes at various osmolalities. When the osmolality increased from 314 to 463mOsm/Kg, specific EPO productivity (qp) was increased up to 1.6-fold but cell growth was inhibited. EPO has a complex oligosaccharide structure that plays an important role in biological activity in vivo. To investigate the influence of hypoerosmotic pressure on the glycosylation, structural analysis of oligosaccharide was calTied out. Recombinant human EPO was produced by CHO cells grown under various osmotic pressure and purified from culture supernatants by heparin-sepharose affinity column and immunoaffinity column. N-linked oligosaccharides were released enzymatically and isolated by paper chromatography. The isolated oligosaccharides were labeled with fluorescent dye, 2-aminobenzamide and analyzed with MonoQ anion exchange chromatography and GlycosepN amide chromatography for the assignment of GU (glucose unit) value. Glycan analysis by HPLC showed that neutral (asialo) oligosaccharide was increased slightly with an increase in osmolality. In portion of sialylated glycan, total relative amount of mono- and di-sialyated glycan was increased but that of tri- and tetra-sialylated glycan decreased as osmolality was increased.

  • PDF

Cell Design and Job Assignment in Manufacturing System (제조시스템에서 작업장 설계와 작업할당)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.42
    • /
    • pp.99-109
    • /
    • 1997
  • This paper considers to determine the processing workstation of parts and number of machines at workstations in multi-stage manufacturing system. Several part types are processed simultaneously through multi-stage, which consist of several workstations. The machines in each stage are identical in function, but non-identical in functional performance depending on workstations. Two models are suggested. One is assumed that a part type can be processed at the only one workstation in each processing stage. The other is assumed that a part type can be processed at several workstations. Decision criteria is to minimize the sum of the processing cost, travel cost and machine setup cost. Model formulations are presented, and a numerical example is shown.

  • PDF

Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design (Network 분석과 신경망을 이용한 Cellular 생산시스템 설계)

  • Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.

  • PDF