• Title/Summary/Keyword: Ce/ZnO

Search Result 53, Processing Time 0.022 seconds

Petrology, Geochemistry and Tectonic Implication of the A-type Daegang granite in the Namwon area, Southwestern part of the Korean Peninsula (한반도 남서부 남원 일대에 분포하는 A형 대강 화강암의 암석학, 지화학 및 지구조적 의미)

  • Kim, Yong-Jun;Cho, Deung-Lyong;Lee, Chang-Shin
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.399-413
    • /
    • 1998
  • Daegang granite is located around the Namwon-gun, Cheolabuk-do, and is an elongate stock $(80 km^{2})$ in the NNE-SSW direction. Daegang granite has the very same mineralogical and geochemical characteristics as those of the typical A-type granites; (1) it is a one feldspar hypersolvus granite, and is classified as an alkali feldspar granite in the lUGS scheme, (2) has small amounts of Fe-rich biotite (annite) and alkali amphibole (ribeckite) that are late in the crystallization sequence of the granitic magma, (3) always contains opaque oxides, fluorite and zircon, (4) shows high and quite homogeneous $SiO_2$, content (mostly 72~77 wt.%) and $(Na_{2}O+K_{2}O)/Al_{2}O_{3}$ ratio (0.90~0.98), (5) contains high Ga, lOOOO*Ga/Ai, $K_{2}O+Na_{2}O$, $(K_{2}O+Na_{2}O)/CaO$, $K_{2}O/MgO$, FeO/MgO, agpaitic index, Zr, Nb, Ce, Y, Zn value or ratio that resemble to those of the Australian A-type granites (Whalen et al., 1987), and (6) has enriched LREE and HREE that show flat variation pattern with slightly depleted in HREE and profound Eu anomalies (Eu/Eu*=0.04~0.l4). In the tectonic discrimination diagrams of Pearce et al. (1984) and Eby (1992), Daegang granite is classified as a within plate granite and $A_{2}-type$.

  • PDF

Geochemical Study on Geological Groups of Stream Sediments in the Gwangju Area (광주지역 하상퇴적물에 대한 지질집단별 지구화학적 연구)

  • Kim, Jong-Kyun;Park, Yeung-Seog
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.481-492
    • /
    • 2005
  • The purpose of this study is to determine geochemical characteristics for stream sediments in the Gwangju area. We collect the stream sediments samples by wet sieving along the primary channels and dry these samples slowly in the laboratory and grind to under 200mesh using an alumina mortar fur chemical analysis. Major elements, trace and rare earth elements are determined by XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on geological groups of stream sediments, we separate geologic groups which are derived from Precambrian granite gneiss area, Jurassic granite area and Cretaceous Hwasun andesite area. Contents range of major elements for stream sediments in the Gwangju area are $SiO_2\;51.89\~70.63\;wt.\%,\;Al_2O-3\;12.91\~21.95\;wt.\%,\;Fe_2O_3\;3.22\~9.89\;wt.\%,\;K_2O\;1.85\~4.49\;wt.\%,\;MgO\;0.68\~2.90\;wt.\%,\;Na_2O\;0.48\~2.34\;wt.\%,\;CaO\;0.42\~6.72\;wt.\%,\;TiO_2\;0.53\~l.32\;wt.\%,\;P_2O_5\;0.06\~0.51\;wt.\%\;and\;MnO\;0.05\~0.69\;wt.\%.$ According to the AMF diagram for stream sediments and rocks, the stream sediments are plotted on boundary of tholeiitic series and calk alkaline series, which shows that contents of $Fe_2O_3$ are higher in stream sediments than rocks. According to variation diagram of $SiO_2$ versus $(K_2O+Na_2O),$ stream sediments are plotted on subalkaline series. Contents range of trace and rare earth elements for stream sediments in the Gwangiu area are Ba$590\~2170$ppm, Be1\~2.4$ppm, Cu$13\~79$ppm, Nb$20\~34$ppm, Ni$10\~50$ppm, Pb$17\~30$ppm, Sr$70\~1025$ ppm, V$42\~135$ppm, Zr$45\~171$ppm, Li$19\~77$ppm, Co$4.3\~19.3$ppm, Cr$28\~131$ppm, Cs$3.1\~17.6$ppm, Hf$5\~27.6$ppm, Rb$388\~202$ppm, Sb$0.2\~l.2$ ppm, Sc$6.4\~17$ppm, Zn$47\~389$ppm, Pa$8.8\~68.8$ppm, Ce$62\~272$ppm, Eu$1\~2.7$ppm and Yb$0.9\~6$ppm.

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.

Major, Trace and Rare Earth Element Geochemistry, and Oxygen-Isotope Systematics of Illite/smectite in the Reindeer D-27 Well, Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트의 원소 지화학 및 산소동위원소 연구)

  • Ko, J.;Hesse, R.;Longstaffe, F.J.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.351-367
    • /
    • 1995
  • The elemental geochemistry and oxygen isotopes of illite/smectite (I/S) have been studied in relationship to the mineralogical trend in the Reindeer D-27 well, Beaufort-Mackenzie Basin. The increase in concentrations of $K_2O$, Rb and rare earth elements (REE), the decrease in concentrations of tetrahedral elements such as Mg, Ti, Sc, Zn and Zr, and the increase in concentrations of tetrahedral elements such as Be and V can be related to I/S compositions that vary systematically with depth. Layer formulae of S- and I-layers are estimated as $[Al_{1.57}Fe_{.19}Mg_{.31}Ti_{.07}][Si_{3.84}Al_{.16}]O_{10}(OH)_2$ and $[Al_{1.84}Mg_{.16}][Si_{3.33}Al_{.67}]O_{10}(OH)_2$, respectively. The mobilization of REE appears to occur during illitization. The increase in concentrations of REE, especially La and Ce, with depth is probably linked to incorporation of ions with high valency (e.g. $V^{5+}$) in tetrahedral sites. The excess valency due to V is partly counter-balanced by ions with low valency (e.g. $Be^{2+}$) and, in turn, the local valency deficiency caused by $Be^{2+}$ could be compensated by high-charge interlayer cations such as REE (+3). ${\delta}^{18}O$ values of I/S range from 2.91 to 15.72‰ (SMOW), and increase with depth, contrasting to trends observed in the Gulf Coast and elsewhere. The increase in ${\delta}^{18}O$ of I/S results from the rapid increase in ${\delta}^{18}O$ of pore water that overcomes the decrease in temperature-dependent fractionation values with increasing burial depth (${\delta}^{18}O_{pore\;water}>-d{\Delta}/_{I/S-water};\;d{\delta}^{18}O_{I/S}>0$). Calculated ${\delta}^{18}O$ values of pore water in equilibrium with I/S suggest that the original water was probably meteoric water. The stratification of pore water is postulated from the presence of an isotopically light interval, about 450m thick. The depth range of the isotopically light zone overlaps, but does not coincide with the interval of lowered I-content and $K_2O$ concentrations, suggesting that oxygens may have been exchanged independently of mineralogical and geochemical reactions.

  • PDF

Geochemical Characteristics of Soils and Sediments at the Narim Mine Drainage, Korea: Dispersion, Enrichment and Origin of Heavy Metals (나림광산 수계의 토양과 퇴적물에 관한 지구화학적 특성: 중금속 원소의 분산, 부화 및 기원)

  • Lee, Chan Hee;Lee, Hyun Koo;Lee, Jong Chang
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.297-310
    • /
    • 1998
  • Geochemical characteristics of environmental toxic elements at the Narim mine area were investigated on the basis of major, minor, rare earth element geochemistry and mineralogy. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in soils and sediments range from 11.57 to 22.21 and from 1.86 to 3.93, and are partly negative and positive correlation against $SiO_2/Al_2O_3$ (3.41 to 4.78), respectively. These suggested that sediment source of host granitic gneiss could be due to rocks of high grade metamorphism originated by sedimentary rocks. Characteristics of some trace and rare earth elements of V/Ni (0.33 to 1.95), Ni/Co (2.00 to 6.50), Zr/Hf (11.27 to 53.10), La/Ce (0.44 to 0.55), Th/Yb (4.07 to 7.14), La/Th (2.35 to 3.93), $La_N/Yb_N$ (6.58 to 13.67), Co/Th (0.63 to 2.68), La/Sc (3.29 to 5.94) and Sc/Th (0.49 to 1.00) are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. Major elements in all samples are enriched $Al_2O_3$, MgO, $TiO_2$ and LOI, especially $Fe_2O_3$ (mean=7.36 wt.%) in sediments than the composition of host granitic gneiss. The average enrichment indices of major and rare earth elements from the mining drainage are 2.05 and 2.91 of the sediments and are 2.02 and 2.60 of the soils, normalizing by composition of host granitic gneiss, respectively. Average composition (ppm) of minor and/or environmental toxic elements in sediments and soils are Ag=14 and 1, As=199 and 14, Cd=22 and 1, Cu=215 and 42, Pb=1770 and 65, Sb=18 and 3, Zn=3333 and 170, respectively, and extremely high concentrations are found in the subsurface sediments near the ore dump. Environmental toxic elements were strongly enriched in all samples, especially As, Cd, Cu, Pb, Sb and Zn. The level of enrichment was very severe in mining drainage sediments, while it was not so great in the soils. Based on the EPA value, enrichment index of toxic elements is 8.63 of mining drainage sediments and 0.54 of soils on the mining drainage. Mineral composition of soils and sediments near the mining area were partly variable being composed of quartz, mica, feldspar, amphibole, chlorite and clay minerals. From the gravity separated mineralogy, soils and sediments are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various hydroxide minerals.

  • PDF

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

Mineralogy and Chemical Properties according to Particle Size Separation of Hwangto (Reddish Residual Soil) used in Feeding of Cattle (한우 사육에 이웅한 황토(풍화토)의 입도분리에 따른 광물성분 및 화학적 특성)

  • 황진연;박현진;양경희;이효민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2002
  • Mineral composition and chemical properties of Hwangto (reddish residual soil) that used in feeding of cattles at Iksan, Jeollabuk-do, Korea were examined according to particle size separation such as gravel, sand, silt, coarse clay and fine clay. Mineral composition analyses reveal that gravel and sand are mainly composed of quartz and feldspars and that kaolin mineral and illite are dominant in clay and silt. Iron oxides are mainly included in fine clay. According to chemical analyses of major elements, Al, Fe and $H_2O$ contents are increased with decreasing of particle size. This trend well agrees with increase of clay minerals in smaller particles, Chemical analyses of trace elements indicate that contents of Zn, Rb, Sr, Ba, Pb significantly differ with particle sizes. Ba and Sr are included in feldspars since these elements are abundant in sand containing abundant feldspars. Pb and Sm are abundant in sample before particle size separation, but the contents are significantly decreased after separation. Therefore, most of these elements appear to be existed as removable phase. Nb, La, Th, Ce are more abundant in silt. The contents of all the other trace elements tend to be increased in smaller particles containing more clay minerals. The contents of changeable cations and teachable elements in acid and alkali solutions are high in clay samples. All the above results indicate that using the portion of smaller particle of Hwangto for livestock feed rather than bulk Hwangto can improve cation exchangeable capacity, ion leaching capacity and sorption properties.

GYAGG/6LiF composite scintillation screen for neutron detection

  • Fedorov, A.;Komendo, I.;Amelina, A.;Gordienko, E.;Gurinovich, V.;Guzov, V.;Dosovitskiy, G.;Kozhemyakin, V.;Kozlov, D.;Lopatik, A.;Mechinsky, V.;Retivov, V.;Smyslova, V.;Zharova, A.;Korzhik, M.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1024-1029
    • /
    • 2022
  • Composite scintillation screens on a base of Gd1.2Y1.8Ga2.5Al2.5O12:Ce (GYAGG) scintillator have been evaluated for neutron detection. Besides the powdered scintillator, the composite includes 6LiF particles; both are merged with a binder and deposited onto the light-reflecting aluminum substrate. Results obtained demonstrates that screens are suitable for use with a silicon photomultiplier readout to create a prospective solution for a compact and low-cost thermal neutron sensor. Composite GYAGG/6LiF scintillation screen shows a pretty matched sensitivity and γ-background rejection with a widely used ZnS/6LiF screens however, possesses forty times faster response.

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF