• Title/Summary/Keyword: CdS films

Search Result 250, Processing Time 0.029 seconds

Optical and Optoelectric Properties of PbCdS Ternary Thin Films Deposited by CBD

  • Mohammed, Modaffer. A.;Mousa, Ali M.;Ponpon, J.P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • $Pb_{x}Cd_{1-x}S$ films are prepared in the composition range of 0.05${\leq}x{\leq}$0.25, using a chemical bath deposition growth technique under optimum conditions amide at realizing good photo response. The x-ray diffraction results show that the films are of PbS-CdS composite with individual CdS and PbS planes. The films exhibit two direct band gaps, 2.4 eV attributed to CdS, while the other varies continuously from 2.4 eV to 1.3 eV. The films surface morphology is smooth with crystallite, whose grain size increases with increasing mole fraction (x). The decrease in band gap with increase in lead concentration suggests inter-metallic compound of PbS (Eg=0.41 eV) with CdS (Eg=2.4 eV)

Photovoltaic Properties of Sintered CdS/CdTe Solar Cell (소결체 ITO/CdS/CdTe 태양전지의 광전압특성)

  • 김동섭;조은철;안병태;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.216-220
    • /
    • 1994
  • Polycrystalline CdS films have been prepared by coating a slurry, which consisted of CdS, 11w% CdCl$_2$ and appropriate amount of propylene glycol, on glass substrate and glass substrate coated with indium tin oxide(ITO) followed by sintering in a nitrogen atmosphere. CdTe slurries consisting of Te powder and Cd powder were coated on the sintered CdS films and ITO/CdS films and were sintered in nitrogen to prepare sintered CdS/CdTe and ITO/CdS/CdTe solar cells. The value of fill factor increased due to low series resistance and open circuit voltage decreased due to low shunt resistance in the ITO/CdS/CdTe solar cells.

The Optical Characteristics of CdS Thin Films and Powders (CdS 분말 및 박막의 광학적 특성)

  • Chang, Ki-Seog
    • Korean Journal of Crystallography
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • In order to characterize the optical properties of CdS thin films and CdS powders, the following experiments were performed: CdS wurtzite thin films were made using 99.99% CdS (Aldrich) powder and the $AlO_x$ membranes in $7{\times}10^{-6}$ torr(here, the average vacuum coating speed is $1{\AA}/sec$.). The surface states of CdS nano-particles with dimensions of 3.87 nm were studied through the fluorescence spectroscopy. From the resulting spectra exhibited, we can see a sharp fluorescence at 451 nm arising from the excitons on the CdS thin films, compared with the 448nm peak of the CdS powders.

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.164-168
    • /
    • 2011
  • Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

Visible photochromic energy shift of $WO_{3}$/CdS thin films fabricated by thermal evaporation method (진공증착 법으로 제작한 $WO_{3}$/CdS 박막의 가시광 광 변색의 에너지 전환)

  • Kim, Keun-Mook;Kim, Myung-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.29-34
    • /
    • 2005
  • Tungsten oxide($WO_{3}$) is suitable to materials for photochromic window in the visible region. The resistivities of CdS, $WO_{3}$, and $WO_{3}$/CdS films prepared by thermal evaporation method were $4.61\times 10\^{3}$, $7.59\times10^{3}$, and $6.29\times10^{3}$ $\omega$ cm. And x-ray diffraction patterns of CdS, $WO_{3}$/CdS films showed a preferred orientation of hexagonal(002), and the monoclinic(020) structure, respectively. The optical transmission were measured that the cut-on wavelength were 510nm, 380nm for CdS and $WO_{3}$ films respectively, and the transmission spectrum of $WO_{3}$/CdS was shifted into the visible region. Photoluminescence(PL) spectra showed the two peaks at 2.8 eV and 3.2 eV for the as-grown sample($WO_{3}$/CdS ($500{\AA}$), but the other sample($WO_{3}$/CdS ($1000{\AA}$)) had a peak energy value of 2.8 eV. The photochromism of $WO_{3}$/CdS films showed that the excitation of electron-hole pairs and subsequent coloration is shifted into visible-light range. And the spectral behavior of coloration turned out to be proportional to the excited electron-hole pairs creation rate of CdS film. This result is interpreted in terms of charge carrier injection from the CdS-layer into the $WO_{3}$ films. We found a value of about 2.8 eV of $WO_{3}$/CdS film which is somewhat higher than peak energy of 2.54 eV using CBD prepared by Bechinger et. al.

  • PDF

Growth and Properties of $Cd_{1-x}$$Zn_x$/S Films Prepared by Chemical Bath Deposition for Photovoltaic Devices (Chemical Bath Depsoition법에 의한 $Cd_{1-x}$$Zn_x$/S 박막의 제조 및 특성에 관한 연구)

  • 송우창;이재형;김정호;박용관;양계준;유영식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.104-110
    • /
    • 2001
  • Structural, optical and electrical properties of Cd$_{1-x}$ Zn$_{x}$S films deposited by chemical bath deposition(CBD), which is a very attractive method for low-cost and large-area solar cells, are presented. Especially, in order to control more effectively the zinc component of the films, zinc acetate, which was used as the zinc source, was added in the reaction solution after preheating the reaction solution and the pH of the reaction solution decreased with increasing the concentration of zinc acetate. The films prepared after preheating and pH control had larger zinc component and higher optical band gap. The crystal structures of Cd$_{1-x}$ Zn$_{x}$S films was a wurtzite type with a preferential orientation of the (002) plane and the lattice constants of the films changed from the value for CdS to those for ZnS with increasing the mole ratio of the zinc acetate. The minimum lattice mismatch between Cd$_{1-x}$ Zn$_{x}$S and CdTe were 2.7% at the mole ratio of (ZnAc$_2$)/(CdAc$_2$+ZnAc$_2$)=0.4. As the more zinc substituted for Cd in the films, the optical transmittance improved, while the absorption edge shifted toward a shorterwavelength. the photoconductivity of the films was higher than the dark conductivity, while the ratio of those increased with increasing the mole ratio of zinc acetate. acetate.

  • PDF

Aqueous-deposited CdS Thin Films for Photovoltaic Application (용액증착법에 의한 광전성 CdS 박막제조)

  • 신재혁
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.161-164
    • /
    • 1997
  • Thin films of CdS were prepared from an aqueous solution containing Cd(Ac)$_2$, NH$_4$OH, NH$_4$Ac and (NH$_2$)$_2$CS for photovoltaic application. Growth rate of CdS films was increased with increasing temperature of reactive solution and with decreasing concentration of NH$_4$OH. Optical transmittances were more than 60%, independent with temperature and concentrations, and were changed with thickness of CdS films. Growth films mostly showed the presence of polycrystallines with mixed cubic and condition. The resistivities of CdS were decreased by doping boron and criticial amount of dopant was determined.

  • PDF

Electrical and Optical Properties of CdS Thin Films Deposited by CSVT Method (CSVT법으로 제조된 CdS박막의 전기적 및 광학적 특성)

  • Park, Ki-Cheol;Shim, Ho-Seob
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.414-422
    • /
    • 1997
  • CdS thin films with low resistivity and adequate transmittance in the visible region for the window of CdS/CdTe hetero junction solar cel1 were prepared by close spaced vapor transport(CSVT) method. The electrical and optical properties of the CdS thin films were investigated in terms of the deposition conditions, such as the substrate temperature, the working pressure, and the source temperature. The substrate temperature, the working pressure, and the source temperature for the optimum deposition of the CdS thin films were $300^{\circ}C$, 100mTorr, and $730^{\circ}C$, respectively. The resistivity and the transmittance of the CdS thin films deposited under this condition were about $7.21{\times}10^{3}{\Omega}cm$ and over 65%, respectively. The crystallinity, the resistivity, and optical band gap were improved greatly compared to the CdS thin films deposited by general high vacuum evaporation.

  • PDF

Effect of Reaction Temperature on Properties of CdS Thin Films Prepared by Chemical Bath Deposition (화학적으로 증착된 CdS 박막의 반응온도에 따른 물성)

  • Song, Woo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.112-117
    • /
    • 2005
  • In this paper, CdS thin films, which were widely used as a window layer of the CdS/CdTe and the $CdS/CuInSe_2$heterojunction solar cell, were grown by chemical bath deposition, and the structural, optical and electrical properties of the films on reaction temperatures were investigated. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And Ammonium acetate was used as the buffer solution. As the reaction temperatures were increased, the deposition rate of CdS fllms prepared by CBD was increased and the grain size was large due to increasing reaction rate in solution, also optical transmittance of the films in visible lights was increased on rising reaction temperatures.

Photo-electronic Properties of Cd(Cu)S/CdS Thin Films and Diodes Prepared by CBD

  • Cho, Doo-Hee;Kim, Kyong-Am;Song, Gi-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • In this paper, CdS/Cd(Cu)S thin films and diodes were manufactured via a chemical bath deposition (CBD) process, and the effects of $NH_4Cl$ and TEA(triethylamine) on the properties of the films were examined. The addition of $NH_4Cl$ significantly increased the thickness of the CdS and Cd(Cu)S films, however, the addition of TEA decreased the thickness in both cases slightly. The addition of $NH_4Cl$ along with TEA increased the film thickness more effectively compared to the addition of only $NH_4Cl$. The thickness of the CdS film prepared from an aqueous solution of 0.007 M $CdSO_4$, 1.3 M $NH_4OH$, 0.03 M $SC(NH_2)_2$, 0.0001 M TEA and 0.03 M $NH_4Cl$ was 310 nm. Dark resistivity of the CdS film was $1.2{\times}10^3\;{\Omega}cm$ and the photo resistivity with $500\;W/cm^2$ irradiation of white light was $20{\Omega}cm$. The Cd(Cu)S/CdS thin film diodes prepared by CBD showed good rectifying characteristics.