• Title/Summary/Keyword: Cd concentration

Search Result 1,411, Processing Time 0.028 seconds

The Effect of the Uncariae Ramulus et Uncus on the Regeneration Following CNS Injury (중추신경계 손상 회복에 미치는 대한 조구등의 영향)

  • Lee, Jin-Goo;Park, Hyoung-Jin;Kim, Dong-Woong;Song, Bong-Keun
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • Objective : Following central nervous system(CNS) injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Also myelin debris such as MAG inhibits axonal regeneration. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. MAG is one of several endogenous axon regeneration inhibitors that limit recovery from CNS injury and disease. It was reported that molecules that block such inhibitors enhanced axon regeneration and functional recovery. Recently it was reported that treatment with anti-CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Uncariae Ramulus et Uncus on the regulation of CD81, GFAP and MAG that increase when gliosis occurs. Methods : MTT assay was performed to examine cell viability, and cell-based ELISA, western blot and PCR were used to detect the expression of CD81, GFAP and MAG. Then also immunohistochemistry was performed to confirm in vivo. Results : Water extract of Uncariae Ramulus et Uncus showed relatively high cell viability at the concentration of 0.05%, 0.1% and 0.5%. The expression of CD81, GFAP and MAG in astrocytes was decreased after the administration of Uncariae Ramulus et Uncus water extract. These results was confirmed in the brain sections following cortical stab injury by immunohistochemistry. Conclusion : The authors observed that Uncariae Ramulus et Uncus significantly down-regulates the expression of CD81, GFAP and MAG. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.

Abnormalities of Growth and Morphology in the Attached Diatoms (Ulnaria ulna) according to Heavy Metal Pollution (중금속 오염에 따른 부착규조 (Ulnaria ulna)의 성장 및 형태 변화)

  • Shin, Ra-Young;Ryu, Hui-Seong;Lee, Jung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.559-567
    • /
    • 2020
  • The abnomal responseses on growth and morphology of attached diatoms by various heavy metals were studied. Ulnaria ulna (Nitzsch) Compère was employed as experimental species and exposed to the five heavy metals such as Cu, Zn, Pb, Cd, and As with four concentrations (0, 0.01, 0.1, and 2 mg L-1), respectively. The samples of Ulnaria ulna were examined on the changes of cell growth and teratological forms on the 7th, 14th, 21th, and 28th day, respectively, after exposure to the heavy metals. The samples exposed to the highest concentration, 2.0 mg L-1, of all the heavy metals showed the most obvious decreases of growth. The samples exposed to Cd (μ=0.049day-1) and As (μ=0.048day-1) showed the highest decreasing rate of growth (p=0.021(Cd), p=0.002(As)) and the highest morphological changes of diatom valves were also samples exposed to Cd (10.41%) and As (10.13%) (p=0.009 (Cd), p=0.005(As)). In contrast, Pb induced the lowest decreasing rate (μ=0.090 day-1) and the least change in valve morphology (3.31%). The Cd and As showed relatively stronger effects on growth rates compared to Cu, Zn, and Pb. For the percentage of emergence of morphological species by the type, the highest percentage were observed in sampled exposed to type 1 (43.4%) and followed by type 2 (29.1%). The type 2 and 4 were most abundant in samples exposed to Zn and Pb while the type 3 was most abundant in Cd and As. The Cu induced only type 1, suggesting that the frequency of emergence of each type varied among hevay metals. This research suggests that the degrees of abnomal changes on growth rate and valve morphology of Ulnaria ulna can be used as a bioindicater species for heavy metal contamination in freshwater.

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (I) - Focusing on AERMOD Meteorological Preprocessor - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(I) - AERMOD 기상 전처리를 중심으로 -)

  • Kim, Suhyang;Park, Sunhwan;Tak, Jongseok;Ha, Jongsik;Joo, Hyunsoo;Lee, Naehyun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.271-285
    • /
    • 2022
  • The AERMET, the AERMOD meteorological preprocessing program, mainly used for environmental impact assessment and Integrated Environmental Permit System (IEPS) in Korea, has not considered the land covers characterasitics, and used only the past meteorological data format CD-144. In this study, two results of AERMET application considering CD-144 format and ISHD format, being used internationally, were compared. Also, the atmospheric dispersion characteristics were analyzed with consideration of land cover. In the case of considered the CD-144 format, the actual wind speed was not taken into account in the weak wind (0.6~0.9m/s) and other wind speed due to the unit conversion problem. The predicted concentration considering land cover data was up to 387% larger depending on the topographic and emission conditions than without consideration of land cover. In conclusion, when using meteorological preprocessing program in AERMOD modelling, AERMET, with ISHD format, land cover characterasitics in the area should be considered.

Inhibitory Effects of Trichosanthis Radix in the Activity and Proliferation of Th2 T Cells and Eosinophils in vitro : Implications on its Regulatory Roles for Asthma (과루근(瓜蔞根)이 Th2 T 세포와 호산구에 대한 활성 및 증식 억제에 미치는 영향)

  • Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.29-37
    • /
    • 2009
  • Objectives : The present study was carried out to investigate the effect of Trichosanthis Radix extract (TRE) on the proliferation and activation of eosinophils which were prepared from lung cells of asthma-induced mice by ovalbumin (OVA) treatment. Methods : C57BL/6 mouse was exposed to OVA three times a week for 6 weeks. The mouse lung tissues were dissected out, chopped and dossiciated with collagenase (1 $\mu$g/ml). Eosinophils were activated by rmIL-3/rmIL-5 co-treatments. The lung cells were treated with TRE, incubated for 48 hr at 37$^{\circ}C$, and analyzed by flow cytometer, ELISA and RT-PCR methods Results : To measure cytotoxicity, mouse lung fibroblast cells (mLFCs) were pretreated with various concentrations of TRE. TRE at 100 $\mu$g/ml, the highest concentration, examined did not have any cytotoxic effects on mLFCs. In FACS analysis, number of granulocyte/lymphocyte, CD3e-/CCR3+, CD3e+/CD69+, CD4+/CD8+ T cells in asthma-induced lung cells were significantly decreased by TRE treatment compared to the control group. But CD4+/CD25+ T cells were not examined significant change in lung cells treated with TRE. In ELISA analysis, production levels of IL-3, IL-5, IL-13 and histamine in asthma-induced lung cells, which were induced by rIL-3 plus rmIL-5 co-treatment, were significantly decreased by TRE treatment. Conclusions : The present data suggested that Trichosanthis Radix on the inhibition of parameters associated with asthma responses in eosinpophils, and thus implicate the possibility for the clinical application of Trichosanthis Radix.

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF) (침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석)

  • Choi, Jaeyeong;Kim, Do-Gyun;Jung, Euo Chang;Kwen, HaiDoo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

Statistical Modeling on the Sorption of Heavy Metals by Clay Minerals (점토의 중금속 흡착에 대한 통계모델링)

  • 정찬호;김수진
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • The statistical modeling was introduced to satisfy various experimental conditions on the sorption of heavy metals (Pb, Cu, Cd, and Zn) by clay minerals, i.e. kaolinite, illite and chlorite. The Box-Behnken model designed statistically was applied to determine a relative impact among three variables such as pH, HCO3(or K) concentration and initial concentration of heavy metals. The SAS program was used to obtain the statistical solution by surface response analysis. The results of a statistical sorption modelling indicated that pH is a strong impact of the variables influencing the sorption of heavy metals. A relative effect between an initial concentration of heavy metals and bicarbonate(or K) concentration is dependent on solution condition. The sorption edge of heavy metals as function of pH shows sigmoidal curve, and a great increase in the range of pH 6~8. The sorption sequence among heavy metals is Cu>Pb>>Zn>Cd. The solution chemistry exerts greater influence on the sorption of heavy metals rather than the crystal chemistry of clay minerals. The potassium exerts some effect into a sorption competition with heavy metals. The research suggests that the statistical modeling is an effective method to demonstrate sorption results in three dimension and to reduce the effort of batch sorption experiment.

Immunoregulatory Effects of Water Extracts of Scutellariae Radix in DSS-Induced Inflammatory Bowel Disease Animal Model (DSS로 유도된 염증성 장 질환 동물 모델에서 황금 열수 추출물이 면역 조절 기능에 미치는 영향)

  • Lee, Sun-Hee;Lim, Beong-Ou;Choue, Ryo-Won
    • Journal of Nutrition and Health
    • /
    • v.37 no.6
    • /
    • pp.431-439
    • /
    • 2004
  • Scutellariae Radix (Scu.), one of the immune-regulatory substances, is recognized to play the role in the metabolic process of inflammation, allergy and immunity. It has been traditionally used in the Oriental medicine to treat inflammatory bowel diseases (IBD). The purpose of this study was to evaluate the effects of water extracts of Scutellariae Radix on the spleen lymphocyte immune function in the Balb/c female mice treated with dextran sodium sulfate (DSS) to induce colitis. Water extract of Scutellariae Radix (100 mg/kg) and sulfasalazine (50 mg/kg) were administrated orally for 2 weeks of experimental period. Mice were divided into three experimental groups randomly: DSS group (5% DSS was ad libitum for 5 days) as control group, DSS + Scu. (water extracts of Scutellariae Radix for 2 weeks after 5% DSS was ad libitum for 5 days) as experimental group, and DSS + Sulfasalazine group (Sulfasalazine for 2 weeks after 5% DSS was ad libitum for 5 days) as positive control group. Levels of Ig A, Ig E, CD4$^{+}$, CD8$^{+}$, TNF-$\alpha$ and other cytokines were measured. Treatment of DSS for 5 days induced bowel inflammation and the treatment with Scu. water exteract and sulfasalazine significantly recovered the damage. The length of intestine of DSS group was significantly shorter than that of other groups. The serum and fecal concentration of Ig A of SS + Scu group was higher than those of DSS group. The contents of CD4$^{+}$ T cells was higher in the DSS + Scu. group than the other groups and CD8$^{+}$ T cells was the lowest in DSS + Sulfasalazine group. The Ig A level of cultured supernatant of spleen lymphocyte was the highest, while the Ig E level was the lowest in SS + Scu group. The concentration of TNF-$\alpha$, cytokine secreted from the Th1 cell in the supernatant spleen lymphocyte, was the highest in the DSS group and the lowest in the DSS + Scu. group. The concentration of IFN-${\gamma}$ and ll...-12 was lower in the DSS + Scu. group than those of the other groups. The concentration of IL-4 in the supernatant of spleen lymphocyte was the lowest in the DSS + Scu. group but IL-10 was not significantly different. Based on these findings, water extract of Scutellariae Radix exhibited the inhibitory effect via IL-4 production thereby inhibited the production of Ig E and strengthened immune system, and alleviated injury in DSS- induced colitis mice model.

Characteristics of Heavy Metals Uptake by Plants: Based on Plant Species, Types of Heavy Metals, and Initial Metal Concentration in Soil (식물정화공법에서 다양한 중금속의 식물체로의 흡수 및 축적 특성 비교: 식물체 종류, 중금속 종류, 토양 내 중금속 농도를 중심으로)

  • Jeong, Seul-Ki;Kim, Tae-Sung;Moon, Hee-Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • Phytoextraction, one type of phytoremediation processes, has been widely used in the removal of heavy metals from polluted soil. This paper reviewed literature on metal uptake by plants and characterized the metal uptake by types of metals (Zn, Cu, Pb, Cd, and As), plant species, initial metal concentrations in soil and the distribution of metals in different parts of plants. The potential of metal accumulation and transport by plants was closely related to plants species, types of metals, and initial metal concentrations in soil. The plants belonging to Brassicaceae, Solanaceae, Poaceae, and Convolvulaceae families have shown the high potential capacity of Cd accumulation. The Gentianaceae, Euphorbiaceae, and Polygonaceae families have exhibited relatively high Pb uptake potential while the Pteridaceae and Cyperaceae families have shown relatively high Zn uptake potential. The Pteridaceae family could uptake a remarkably high amount of As compared with other plant families. The potential metal accumulation per plant biomass has increased with increasing initial metal concentration in soil up to a certain level and then decreased for Cd and Zn. For As, only Pteris vittata had a linear relationship between initial concentration in soil and potential of metal uptake. However, a meaningful relationship for Pb was not found in this study. Generally, the plants having high metal uptake potential for Cd or Pb mainly accumulated the metal in their roots. However, the Euphorbiaceae family has accumulated more than 80% of Pb in shoot. Zn has evenly accumulated in roots and stems except for the plants belonging to the Polygonaceae and Rosaceae families which accumulated Zn in their leaves. The Pteridaceae family has accumulated a higher amount of As in leaves than roots. The types of metals, plant species, and initial metal concentration in soil influence the metal uptake by plants. It is important to select site-specific plant species for effective removal of metals in soil. Therefore, this study may provide useful and beneficial information on metal accumulation by plants for the in situ phytoremediation.

Changes of Chemical Species in Soil Solution Induced by Heavy Metals (중금속이 토양용액 중 화학종 변화에 미치는 영향)

  • Yang, Jae-E.;Lee, Ki-Won;Kim, Jeong-Je;Lim, Hyung-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.263-271
    • /
    • 1995
  • Chemical assessment of soil pollution with heavy metals was made by analyzing the changes in pH, ionic strength, cationic concentration and chemical species in the soil solution. Saturated pastes of the unpolluted soils were made by adding solutions containing Cu or Cd and the final Cu or Cd concentrations were in the range of 0 to 400 mg/kg. After equilibrating for 24 hours at $25^{\circ}C$, the soil solution was extracted from the saturated pastes by the vacuum extraction method and analyzed for pH, electrical conductivity, Cu, Cd, cations and inorganic ligands. Chemical species in soil solution were calculated by the GEOCHEM-PC program employing the input variables of pH, ionic strength(${\mu}$), molar concentrations of cations and ligands. Increasing Cu or Cd additions lowered pH of the soil solution but increased concentrations of Ca, Mg and K resulting in increases of ${\mu}$ of the soil solution. Effects of Cu on lowering pH and increasing ${\mu}$ were greater than those of Cd. Concentrations of Cu or Cd in soil solution were relatively very low as compared to those of additions, but increased linearly with increasing additions representing that concentrations of Cu were higher than those of Cd. At 400 mg/kg additions, concentrations of Cu were in the range of 0.51 to 11.70 mg/L but those of Cd were 34.4 to 88.5 mg/L. Major species of Ca, Mg and K were free ions and these species were equivalent to greater than 95 molar % of the existing respective molar concentrations. These cationic species were not changed by Cu or Cd additions. Major species of Cu in lower pH soils such as SiCL and SL were free $Cu^{2+}$ (>95 molar %), but those in LS having a higher pH were free $Cu^{2-}$ and Cu-hydroxide complex. At 100 mg Cu/kg treatment, $Cu^{2+}$ and Cu-hydroxide complex were equivalent to 73 and 22.4 molar %, respectively. These respective percentages were decreased and increased correspondingly with increasing Cu treatments. Major species of Cd in soil solution were free $Cd^{2+}$ and Cd-chloride complex, representing 79 to 85 molar % for $Cd^{2+}$ and 13 to 20% for Cd-chloride complex at 10 mg Cd/kg treatment. With increasing Cd additions to 400 mg/kg, $Cd^{2+}$ species decreased to $40{\sim}47%$ but Cd-chloride complexes increased to $53{\sim}60$ molar %. These results demonstrated that soil contamination with heavy metals caused an adverse effect on the plant nutritional aspects of soil solution by lowering pH, increasing cations temporarily, and increasing free metal concentrations and species enough to be phytotoxic.

  • PDF