DOI QR코드

DOI QR Code

Abnormalities of Growth and Morphology in the Attached Diatoms (Ulnaria ulna) according to Heavy Metal Pollution

중금속 오염에 따른 부착규조 (Ulnaria ulna)의 성장 및 형태 변화

  • Shin, Ra-Young (Department of Biology Education, Daegu University) ;
  • Ryu, Hui-Seong (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, Jung-Ho (Department of Biology Education, Daegu University)
  • 신라영 (대구대학교 생물교육전공) ;
  • 류희성 (국립환경과학원 영산강물환경연구소) ;
  • 이정호 (대구대학교 생물교육전공)
  • Received : 2020.09.10
  • Accepted : 2020.11.30
  • Published : 2020.11.30

Abstract

The abnomal responseses on growth and morphology of attached diatoms by various heavy metals were studied. Ulnaria ulna (Nitzsch) Compère was employed as experimental species and exposed to the five heavy metals such as Cu, Zn, Pb, Cd, and As with four concentrations (0, 0.01, 0.1, and 2 mg L-1), respectively. The samples of Ulnaria ulna were examined on the changes of cell growth and teratological forms on the 7th, 14th, 21th, and 28th day, respectively, after exposure to the heavy metals. The samples exposed to the highest concentration, 2.0 mg L-1, of all the heavy metals showed the most obvious decreases of growth. The samples exposed to Cd (μ=0.049day-1) and As (μ=0.048day-1) showed the highest decreasing rate of growth (p=0.021(Cd), p=0.002(As)) and the highest morphological changes of diatom valves were also samples exposed to Cd (10.41%) and As (10.13%) (p=0.009 (Cd), p=0.005(As)). In contrast, Pb induced the lowest decreasing rate (μ=0.090 day-1) and the least change in valve morphology (3.31%). The Cd and As showed relatively stronger effects on growth rates compared to Cu, Zn, and Pb. For the percentage of emergence of morphological species by the type, the highest percentage were observed in sampled exposed to type 1 (43.4%) and followed by type 2 (29.1%). The type 2 and 4 were most abundant in samples exposed to Zn and Pb while the type 3 was most abundant in Cd and As. The Cu induced only type 1, suggesting that the frequency of emergence of each type varied among hevay metals. This research suggests that the degrees of abnomal changes on growth rate and valve morphology of Ulnaria ulna can be used as a bioindicater species for heavy metal contamination in freshwater.

Keywords

References

  1. Aleem, A. A. (1950). Distribution and ecology of British marine littoral diatoms, The Journal of Ecology, 38, 75-106. https://doi.org/10.2307/2256526
  2. American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater, 21st ed, American Public Health Association, Washington, D. C. USA.
  3. Anderson, D. M., Morel, M. M., and Guillard, R. R. L. (1978). Growth limitation of a coastal diatom by low zinc ion activity, Nature, 276, 70-71. https://doi.org/10.1038/276070a0
  4. Antoine, S. E. and Benson-Evans, K. (1984). Teratological variations in the River Wye diatom flora, Wales, UK., Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein, 59-66.
  5. Arini, A., Feurtet-Mazel, A., Maury-Brachet, R., Pokrovsky, O. S., Coste, M., and Delmas, F. (2012). Recovery potential of priphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn), Ecotoxicology, 21, 3-14.
  6. Barber, H. G. and Carter, J. R. (1981). Observations on some deformities found in British diatoms, Microscopy 34, 214-226.
  7. Beakes, G., Canter, H. M., and Jaworski, G. H. M. (1988). Zoospores. Ultrastructure of Zygorhizidium affluens Canter and Z. planktonicum Canter, Two Chytrids Parasitizing the Diatom Asterionella formosa Hassall, Canadian Journal of Botany, 66, 1054-1067. https://doi.org/10.1139/b88-151
  8. Cantonati, M., Angeli, N., Virtanen, L., Wojtal, A. Z., Gabrieli, J., Falasco, E., Lavoie, I., Morin, S., Marchetto, A., Fortin, C., and Smirnova, S. (2014). Achnanthidium Minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats, Science of the Total Environment, 475, 201-215. https://doi.org/10.1016/j.scitotenv.2013.10.018
  9. Cattaneo, A., Couillard, Y., Wunsam, S., and Courcelles, M. (2004). Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in LacDufault (Quebec, Canada), Journal of Paleolimnology, 32, 163-175. https://doi.org/10.1023/B:JOPL.0000029430.78278.a5
  10. Choi, J. S., Chae, H. S., and Kim, H. S. (2015). Analysis of the epilithic diatom community and comparison of water quality in the Kumho river, Korean Journal of Limmology, 48(2), 115-121. [Korean Literature]
  11. Duong, T. T., Morin, S., Coste, M., Herlory, O., Feurtet-Mazel, A., and Boudou, A. (2010). Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic Diatoms in relation with biofilm maturity, Science of the Total Environment, 408, 552-562. https://doi.org/10.1016/j.scitotenv.2009.10.015
  12. Duong, T. T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M., and Boudou, A. (2008). Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms, Aquatic Toxicology, 90, 19-28. https://doi.org/10.1016/j.aquatox.2008.07.012
  13. Falasco, E., Bona, F., Badino, G., Hoffmann, L., and Ector, L. (2009). Diatom teratologica forms and environmental alterations a review, Hydrobiologia, 623, 1-35. https://doi.org/10.1007/s10750-008-9687-3
  14. Feldt, L. E., Stoermer, E. F., and Schelske, C. L. (1973). Occurrence of morphologically abnormal synedra populations in lake superior phytoplankton, Proceedings of the 16th Conference Great Lakes Research, Huron, Ohio, USA, International Association for Great Lakes Research, Ann Arbor, MI, 34-39.
  15. Filippis, L. F. and Pallaghy, C. K. (1994). Heavy metals: Sources and biological effects, Rai, L. C., Gaur, J. P. and Soeder, C. J. (eds), Algae and Water Pollution, Schweizerbart'sche Verlagsbuchhandlung, E., Stuttgart, 31-77.
  16. George, S. G. (1990). Biochemical and cytological assessments of metal toxicity in marine animals, Furness R. W. and Rainbow, P. S. (eds), Heavy Metals in the Marine Environment, CRC Press, Boca Ratom, 123-142.
  17. Hendey, N. I. (1974). The permanganate method for cleaning freshly gathered diatoms, Microscopy, 32, 423-426.
  18. Hostetter, H. P. and Rutherford, K. D. (1976). Polymorphism of the diatom pinnularia brebissonii in culture and a field collection, Journal of Phycology, 12, 140-146. https://doi.org/10.1111/j.0022-3646.1976.00140.x
  19. Hwang, U. K., Ryu, H. M., Lee, J. W., Lee, S. M., and Kang, H. S. (2014). Toxic effects of heavy metal (Cd, Cu, Zn) on population growth rate of the marine diatom (Skeletonema costatum), Korean Journal of Environmental Biology, 32(3), 243-249. [Korean Literature] https://doi.org/10.11626/KJEB.2014.32.3.243
  20. Jonge, M., Vijver, B. V., Blust, R., and Bervoets, L. (2008). Responses of aquatic organisms to metal pollution in a lowland river in flanders : A comparison of diatoms and macroinvertebrates, Science of the Total Environment, 407, 615-629. https://doi.org/10.1016/j.scitotenv.2008.07.020
  21. Kim, S. Y. and Yun, N. N. (2010). The annual report of Busan metropolitan city institute of health & environment, Busan Institute of Health and Environment, 131-142. [Korean Literature]
  22. Krammer, K. and Lange-Bertalot, H. (1986). Susswasserflora von mitteleuropa. Band 2/1. Bacillariophyceae 1. Teil: Naviculaceae (Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. eds.), Gustav Fischer Verlag. Stuttgart, 1-876.
  23. Krammer, K. and Lange-Bertalot, H. (1988). Susswasserflora von mitteleuropa. Band 2/2. Bacillariophyceae 2. Teil: Bacillariaceaae Epithemiaceae, Surirellaceae (Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. eds.), Gustav Fischer Verlag Stuttgart, 1-596.
  24. Krammer, K. and Lange-Bertalot, H. (1991a). Susswasserflora von Mitteleuropa. Band 2/3. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae (Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. eds.), Gustav Fischer Verlag Stuttgart, 1-576.
  25. Krammer, K. and Lange-Bertalot, H. (1991b). Susswasserflora von Mitteleuropa. Band 2/4. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema (Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. eds.), Gustav Fischer Verlag Stuttgart, 1-437.
  26. Lange-Bertalot, H. and Compere, P. (2001). Fragilaria subgen. Ulnaria, comb. nov., the correct name of the genus including Synedra ulna, when treated in Fragilaria, Diatom Research 16(1), 103-104. https://doi.org/10.1080/0269249X.2001.9705512
  27. Larned, S. T. (2010). A prospectus for periphyton: Recent and future ecological research, Journal of the North American Benthological Society, 29, 182-206. https://doi.org/10.1899/08-063.1
  28. Lavoie, I., Lavoie, M., and Fortin, C. (2012). A mine of information: Benthic algal communi-ties as biomonitors of metal contamination from abandoned tailings, Science of the Total Environment, 425, 231-241. https://doi.org/10.1016/j.scitotenv.2012.02.057
  29. Lee, D. P. and Ko, S. K. (2001). The incidence of abnormalities in bullfrogs, rana catesbeiana, and their heavy metal accumulations in the Yeongsan river system, Korean Journal of Ecology and Environment, 15(2), 153-158. [Korean Literature]
  30. Luis, A. T., Teixeira, P., Almeida, S. F. P., Matos J. X., and Silva, E. F. (2011). Environmental impact of mining activities in the Lousal area (Portugal) : Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream, Science of the Total Environment, 409, 4312-4325. https://doi.org/10.1016/j.scitotenv.2011.06.052
  31. Martin, M. H. and Coughtrey P. J. (1982). Biological monitoring of heavy metal pollution: Land and air, Applied Science Publishers, London, 475.
  32. McFarland, B. H., Hill, B. H., and Willingham, W. T. (1997). Abnormal Fragilaria spp. (Bacillariophyceae) in streams impacted by mine drainage, Journal of Freshwater Ecology, 12, 141-149. https://doi.org/10.1080/02705060.1997.9663517
  33. McMillan, M. and Johansen, J. R. (1988). Changes in valve morphology of Thalassiosira decipiens (Bacillariophyceae) cultured in media of four different salinities, British Phycological Journal, 23, 307-316. https://doi.org/10.1080/00071618800650341
  34. Ministry of Environment (ME). (2017). Water Environment Information System (WEIS), http://water.nier.go.kr/waterData/generalSearch.do?menuIdx=3_1_1&siteTypeCd=A (accessed May 2017).
  35. Morin, S. (2003). Amelioration des techniques de bioindication diatomique et D'analyse des Donnees, Appliquees a la revelation des rffets des pollutions a toxiques, ENTTA de Bordeaux, 1-70.
  36. Morin, S., Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T. T., Tornes, E., Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Peres, F., Becares, E., Coste, M., Feurtet-Mazel, A., Fortin, C., Guasch, H., and Sabater, S. (2012). Consistency in diatom response to metal-contaminated environments. Emerging and priority pollutants in rivers, Springer Berlin Heidelberg, Berlin, 117-146.
  37. Morin, S., Duong, T. T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schafer, J., Winterton, P., Blanc, G., and Coste, M. (2008). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France, Environmental pollution, 151, 532-542. https://doi.org/10.1016/j.envpol.2007.04.023
  38. Pandey, L. K., Kumar, D., Yadav, A., Rai, J., and Gaur, J. P. (2014). Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river, Ecological Indicators, 36, 272-279. https://doi.org/10.1016/j.ecolind.2013.08.002
  39. Philips, D. J. H. (1980). Quantitative aquatic biological indicator: Their use to monitor trace metal and organochlorine pollution, Applied Science Publishers, London, 1-460.
  40. Philips, D. J. H. and Segar, D. A. (1986). Use of bio-indicator in monitoring conservation contaminants: Programme design imparatives, Marine Pollution Bulletin, 17, 1-10.
  41. Rai, L. C., Gaur, J. P., and Kumar, H. D. (1981). Phycology and heavy metal pollution. Biological reviews, Cambridge Philosophical Society, 56, 99-151. https://doi.org/10.1111/j.1469-185X.1981.tb00345.x
  42. Ri, C. S. (2000). Analysis of water quality and heavy metals for surface water and sediments of upsteam and midstream in Nakdong river, Journal of the Korean Cemical Society, 44(6), 547-555.
  43. Ruggiu, D., Luglio, A., Cattaneo, A. and Panzani, P. (1998). Paleoecological evidence for diatom response to metal pollution in lake Orta (N. Italy), Journal of Paleolimnology, 20, 333-345. https://doi.org/10.1023/A:1007929926526
  44. Schmid, A. M. (1975). Uber eine teratologisch entwickelte Synedra ulna, Nova Hedwigia, 26, 431-433.
  45. Schmid, A. M. (1979). Influence of environmental factors on the development of the valve in diatoms, Protoplasma, 99 , 99-115. https://doi.org/10.1007/BF01274072
  46. Schmid, A. M. (1980). Valve morphogenesis in diatoms: apattern-related filamentous system in pennates and the effect of APM, colchicine and osmotic pressure, NovaHedwigia 33, 811-847.
  47. Schmid, A. M. M. (1984). Wall morphogenesis in thalassiosira eccentrica: Comparison of auxospore formation and the effect of MT-Inhibitors, Mann, D. G. (ed.), Proceedings of the 7th International Diatom Symposium, Koeltz, Koenigstein, 47-70.
  48. Schultz, M. E. (1971). Salinity related polymorphism in the brackish-water diatom Cyclotella cryptica, Canadian Journal of Botany, 49, 1285-1289. https://doi.org/10.1139/b71-182
  49. Shin, R. Y., Ryu, H. S., and Lee, J. H. (2017). Influence of heavy metal (Zn) inflow on species composition and morphological abnormalities of epilithic diatom in the river, Journal of Korean Society on Water Environment, 34(4), 424-433. [Korean Literature]
  50. Silva, E. F., Almeida, S. F. P., Nunes M. L., Luis, A. T., Borg, F., Hedlund, M., Sa, C. M., Patinha, C., and Teixeira, P. (2009). Heavy metal pollution downstream the abandoned Coval da Mó Mine (Portugal) and associated effects on epilithic diatom communities, Science of the Total Environment, 407, 5620-5636. https://doi.org/10.1016/j.scitotenv.2009.06.047
  51. Simkiss, K., Taylor, M., and Mason, A. Z. (1982). Metal detoxification and bioaccumulation in Mollusc, Marine biology letters, 3, 187-201.
  52. Singh, A. K. and Rai, L. C. (1990). Use of in situ structural and functional variables of phytoplankton of river Ganga for assessment of heavy metal toxicity, Biomedical and Environmental Sciences, 3, 397-405.
  53. Stoermer, E. F. and Andresen, N. A. (2006). Atypical tabularia in coastal lake Erie, USA, Ognjanova-Rumenova, N. and Manoylov, K. (eds), Fossil and Recent Phycological Studies, Pensoft Publishers, Moscow, 9-16.
  54. Szabo, K., Kiss, K. T., Taba, G., and Acs, E. (2005). Epiphytic diatoms of the Tisza river, Kiskore reservoir and some oxbows of the Tisza river after the cyanide and heavy metal pollution in 2000, Acta Botanica Croatica 64, 1-46.
  55. Woo, M. H., Lee, G. Y., Kim, J. H., Lim, J. H., and Lee, Y. W. (2012). Toxicity assessment of heavy metals in Shihwa lake and its tributaries using the algae, Journal of Korean Society on Water Environment, 28(2), 171-177. [Korean Literature]
  56. Zhou, Q., Zhabg, J., Fu, J., Shi, J., and Jiang, G. (2008). Biomonitoring: an appealing tool forassessment of metal pollution in the aquatic ecosystem, Analytica Chimica Acta, 606, 135-150. https://doi.org/10.1016/j.aca.2007.11.018