• Title/Summary/Keyword: Cd concentration

Search Result 1,409, Processing Time 0.025 seconds

Spectrophotometric Determination of Cadmium and Copper with Ammonium Pyrrolodinedithiocarbamate in Nonionic Tween 80 Micellar Media

  • Lee, Seung Gwon;Choe, Hui Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.463-466
    • /
    • 2001
  • The determination of Cd2+ and Cu2+ with ammonium pyrrolidinedithiocarbamate (APDC) in Tween 80 micellar media has been studied. The UV-visible spectrum of Cd(PDC)2 complex in Tween 80 media had more sensitivity tha n in chloroform. Although the UV-visible spectrum of the Cu(PDC)2 complex in Tween 80 media had somewhat less sensitivity than that in chloroform, absorbance data of Cu2+ were more reproducible in Tween 80 media. The Cd(PDC)2 and Cu(PDC)2 complexes were very stable at pH 7.0 for up to 100 minutes and could be quantitatively chelated if APDC were added to the sample solution more than 30 times the moles of Cd2+ and Cu2+ . The optimum concentration of Tween 80 was 0.1%. The calibration curves of Cd(PDC)2 and Cu(PDC)2 complexes with good linearity were obtained in 0.1% Tween 80 media. The detection limits of Cd2+ and Cu2+ were 0.0493 ㎍mL-1 and 0.0393 ㎍mL-1 , respectively. Recovery yields of Cd2+ and Cu2+ ions in the spiked real samples were almost 100%. Based on experimental results, this proposed method could be applied to the rapid and simple determination of Cd2+ and Cu2+ in real samples.

Oxygen Control in CdS Thin Film by UV Illumination in Chemical Bath Deposition (용액성장법에서 자외선 조사를 이용한 CdS의 산소함량 제어)

  • Baek, Hyeon-ji;Oh, Ji-A;Seo, Young-Eun;Shin, Hye-Jin;Cho, Sung-Wook;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2019
  • In this paper, we compared the performance of $Cu(In,Ga)(S,Se)_2$ (CIGSSe) thin film solar cell with CdS buffer layer deposited by irradiating 365 nm UV light with 8 W power in Chemcial Bath Deposition (CBD) process. The effects of UV light irradiation on the thin film deposition mechanism during CBD-CdS thin film deposition were investigated through chemical and electro-optical studies. If the UV light is irradiated during the solution process, the hydrolysis of Thiourea is promoted even during the same time, thereby inhibiting the formation of the intermediate products developed in the reaction pathway and decreasing the pH of the solution. As a result, it is suggested that the efficiency of the CdS/CIGSSe solar cell is increased because the ratio of the S element in the CdS thin film increases and the proportion of the O element decreases. This is a very simple and effective approach to control the S/O ratio of the CdS thin film by the CBD process without artificially controlling the process temperature, solution pH or concentration.

Three Crystal Structures of Dehydrated $Cd^{2+}$ and $Rb^+$ Exchanged Zeolite A, $Cd_xRb_{12-2x}-A,$ x=4.0, 5.0 and 5.95

  • Song, Yeong-Sim;Kim, Un-Sik;Kim, Yang;Kim, Duk-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.328-331
    • /
    • 1990
  • Three crystal structures of dehydrated Cd(II) and Rb(I) exchanged zeolite A, $Cd_{4.0}Rb_{4.0}-A (a = 12.204(3) {\AA}), Cd_{5.0}Rb_{2.0}-A (a = 12.202(1) {\AA}),$ and $Cd_{5.95}Rb_{0.1}-A (a = 12.250(2) {\AA}),$ have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C.$ All crystals were ion exchanged in flowing streams of mixed $Cd(NO_3)_2·4H_2O$ and $RbNO_3$ aqueous solution with total concentration of 0.05 M. All crystals were dehydrated at ca. $450^{\circ}C$ and $2×10^{-6}$ Torr for 2 days. In all of these structures, $Cd^{2+}$ ions are found on threefold axes, each nearly at the center of a 6-oxygen ring. The first three $Rb^+$ ions per unit cell preferentially associate with 8-oxygen rings, and additional $Rb^+$ ions, if present, are found on threefold axes in the large cavity. The final $R_1$ and $R_2$ values for the three structures are 0.087 and 0.079, 0.059 and 0.067, and 0.079 and 0.095, respectively.

A study on the Establishment of Korean PTWI for Cadmium Based on The Epidemiological Data (국내역학조사에 기초한 한국인의 카드뮴 PTWI 설정 연구)

  • Choi, Chan-Woong;Moon, Jin-Hyun;Park, Hyoung-Su;Ryeom, Tai-Kyung;Lee, Kwang-Ho;Lee, Hyo-Min
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.378-384
    • /
    • 2009
  • There are differences of Cadmium (Cd) urinary concentration which is considered as indicator of renal tubular dysfunction in other countries, so we have reviewed domestic epidemiological data and suggested Korean health based guidance value (HBGV) for Cd to improve an efficiency of risk management. We decided to apply the WHO calculation model which considered the relationship between dietary intake and Cd concentration in urine sample. It is determined that Cd concentration 2.5 ug/g creatinine in urine as the prevalence of renal tubular dysfunction based on epidemiological data, because there is no renal tubular dysfunction and injury/lesion such as proteinuria at the concentration of 11.63 ug/g creatinine which is the highest Cd concentration in urine from the domestic epidemiological data. It is identified that the ratio between the Cd dietary consumption (8.3~10.4 ug/day) and Cd urinary concentration (0.38 ug/g creatinine) in Korean adult who predicting never been exposed to Cd are 21.8~27.3 and then it is applied to the corresponding model suggested by WHO. Also it is applied that 10% of bioavailability and 50% of excretion rate of absorbed to body (the ratio is 24) were assumed. The estimate of daily Cd consumption level which begins tubular dysfunction is 1 ug/kg bw/day, so we suggest the Korean provisional tolerable weekly intake (PTWI) as 7 ug/kg bw/week.

Emulsion liquid membranes for cadmium removal: Studies of extraction efficiency

  • Ahmad, A.L.;Kusumastuti, Adhi;Derek, C.J.C.;Ooi, B.S.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.11-25
    • /
    • 2013
  • Emulsion liquid membrane (ELM) process suffers from emulsion instability problem. So far, emulsion produced by mechanical methods such as stirrer and homogenizer has big size and high emulsion breakage. This paper discussed the application of emulsion produced by sonicator to extract cadmium in a batch ELM system. The emulsions consist of N,N-Dioctyl-1-octanamine (trioctylamine/TOA), nitrogen trihydride (ammonia/NH4OH), sorbitan monooleate (Span 80), and kerosene as carrier, stripping solution, emulsifying agent, and organic diluent, respectively. Effects of comprehensive parameters on extraction efficiency of Cd(II) such as emulsification time, extraction time, stirring speed, surfactant concentration, initial feed phase concentration, carrier concentration, volume ratio of the emulsion to feed phase, and pH of initial feed phase were evaluated. The results showed that extraction efficiencies of Cd(II) greater than 98% could be obtained under the following conditions: 15 minutes of emulsification time, 4 wt.% of Span 80 concentration, 4 wt.% of TOA concentration, 15 minutes of extraction time, 250 rpm of stirring speed, 100 ppm of initial feed concentration, volume ratio of emulsion to feed phase of 1:5, and initial feed pH of 1.53.

Optimum Concentration of the Cd(II)-Quercetin Complexation Reaction (Quercetin의 카드뮴 착물반응에 대한 최적농도)

  • Lee, Jeong-Ho;Shin, Sun-Woo;Baek, Seung-Hwa
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.235-240
    • /
    • 2009
  • The interaction of cadmium (II) ion with quercetin was investigated in aqueous solution at different pH. The quercetin/cadmium stochiometries for cadmium (II) binding have been determined by UV-vis spectrophotometric method. The complexation of Cd(II) ion with 54.72 ${\mu}M$ quercetin (A=1.00793) was formed in 0.2 M $NH_3-0.2$ M $NH_4Cl$ (pH 8.0) buffer solution. 1:1 Cd(II)-complex had a maximum absorbance and showed the bathochromic shift of the long-wavelength band of the UV-vis spectra in the alkaline pH when interacted with quercetin in buffer solution. These results suggest that Cd(II)-quercetin complex has the optimal condition of chelation in basic buffer solution.

Electrical Properties of Single Crystal CdTe by Impurity (불순물에 의한 CdTe단결정의 전기적 특성)

  • 박창엽
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.9-14
    • /
    • 1971
  • N type single crystal CdTe is grown by doping Gallium as 0.01 percent, by using zone melting method. And also p type CdTe is grown by doping Ag, Sb, and Te as 0.01%. Resistivity and Concentration of the n.p type single crystal are measured. And then Li ions are implanted on the n type CdTe by high voltage accellerator with different amount of impurity. Indium is evaporated on the p type in high vacuum condition. These sample are heated so as to make P-N Junction in Argon gas flow. Electrical properties for solar cell are investigated. Photovoltage and current are found to be varyed according to following factor: 1) amount of impurity 2) diffusion thickness 3) temperature and time for making P-N junction. Efficiency of the P-N Junction evaporated Indium is 6.5 when it is heated at 380.deg. C for 15 minutie.

  • PDF

The influence of heavy metal on microbial biodegradation of organic contaminants in soil (토양내의 중금속이 유기오염물질 생분해에 미치는 영향 연구)

  • 최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.196-201
    • /
    • 2000
  • The influence of adsorption on cadmium toxicity to soil microorganisms in smectite-rich soils and sediments was quantified as a function of solution and sorbent characteristics. Adsorption and surface complexation experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Veritsol soil, and to elucidate the effects of the surface complexation on Cd bioavailability and toxicity in soils and sediments. Cadmium adsorption isotherms conformed to the Langmuir adsorption model, with adsorptive capacities of the different samples dependent on their characteristics. Equilibrium geochemical modeling (MINTEQA2) was used to predict the speciation of Cd in the soil suspensions using Langmuir and Triple Layer surface complexation models. The influence of adsorption and surface complexation on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. Adsorption decreased the toxicity of Cd to soil microorganisms. Inner-sphere complexation is more effective than outer-sphere complexation in reducing the bioavailability and toxicity of heavy metals in soils and sediments.

  • PDF

Adsorption Characteristics of Cu, Zn and Cd by Granular Activated Carbon (입상활성탄에 의한 Cu, Zn, Cd 이온의 흡착 특성)

  • 옥삼복;정용준;정승원;강운석
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.333-338
    • /
    • 2002
  • In this work, the characterization of adsorption of Cu, Zn and Cd on granular activated carbon in water has been studied. The factors that affect adsorption in boundary between activated carbon and wastewater are concentration, temperature, contact time, pH and so on. As the result of this study, the maximum adsorption amount of Cu occurred near pH 7, while that of Zn and Cd was near pH 9.6 and 10, respectively. As contact time and temperature are transformed, such factors as optimum contact time and temperature are taken into consideration in an adsorptive process of heavy metal because an adsorption and a reducing process occur. In isotherm of Freundlich, 1/n values of Cu, Cd capacity were between 0.16 and 0.5.

Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell Applications (전기도금법을 이용한 태양전지용 CdSe 나노로드 제작)

  • Ji, Chang-Wook;Kim, Seong-Hun;Lee, Jae-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.596-600
    • /
    • 2009
  • Electrochemical deposition characteristics of CdSe nanorods were investigated for hybrid solar cell applications. CdSe nanorods were fabricated by electrochemical method in $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution using an anodic aluminum oxide (AAO) template. Uniformity of CdSe nanorods was dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtain a 1:1 atomic composition of CdSe. CdSe nanorods deposited by direct-current method showed better uniformity compared to those deposited by purse-current and/or purse-reverse current methods due to the bottom-up filling characteristics. $H_2SeO_3$ concentration showed more significant effects on pH of solution and stoichiometry of deposits compared to that of $CdSO_4$. A 1:1 stoichiometry of uniform CdSe nanorods was obtained from 0.25M $CdSO_4-5$ mM $H_2SeO_3$ electrolytes with a direct current of 10 $mA/cm^2$ at room temperature. X-ray diffraction and electron diffraction pattern investigations demonstrate that CdSe nanorods are a uniform cubic CdSe crystal.