• Title/Summary/Keyword: Cd concentration

Search Result 1,408, Processing Time 0.025 seconds

The Synthetic Study of Environmental Contamination at the Seokdae Municipal Waste Landfill in Pusan (부산 석대 생활폐기물 매립장의 환경오염에 대한 종합적 연구)

  • 김병우;정상용;이민희;이병헌
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.98-103
    • /
    • 2001
  • In order to understand the characteristics of leachate at the Seokdae municipal waste landfill in the Pusan city, the correlation between leachate pollution loading and volume of gas production. concentration of gas and subsidence of ground, the characteristical methos, geochemical analyses and laboratory column tests using samples of gases, leachate and surface soil of Seokdae waste landfill area. Through the analysis of water balance, leachate flow rate and pollution loading were estimated. Geistatistical analysis of four gas components ( $O_2$, C $H_4$, $H_2$S and CO) shows the possibility of ground subsidence around the group of a site with high concentration of gas. From geochemical analyses of leachate, EC and Total-Alkalinity of ground subsidence around the group of a site with high concentration of gas. From geochemical analysis of leachate, Ec and Total-Alkalinity were increased, and Cl, Cr, Mn, Cu, Zn, Cd and Pb were decreassed comparing to the part, and the type of water quality was Na-HC $O_3$ in trilinear diagram. It shows that biodecomposition of municipal wastes continues actively. From the analysis of water balance, the total leachate flow rate is about 465.11㎥/day and pure pollution loading of Cl, Mn and Fe are estimated to 223.8kg/day, 0.2kg/day, 0.3kg/day, respectively. The laboratory column test of residual soil and landfill soil shows 0.206cm and 0.019cm for linear velocity(equation omitted), 0.234 $\textrm{cm}^2$/min and 0.018$\textrm{cm}^2$/min for diffusion coefficient ( $D_{ι}$), and 1.136cm and 0.095cm longitudinal dispersion index ($\alpha$$_{ι}$), respective]y. It demonstrates that the delay time of contamination for residual soil is shorter than that of landfill soil.

  • PDF

Characteristics of Metallic Elements Concentration of Fine Particles(PM10, PM2.5) at Busan in 2004 (2004년 부산지역 미세먼지(PM10, PM2.5) 중의 금속 농도 특성)

  • Jeon Byung-Il;Hwang Yong-Sik;Lee Hyeok-Woo;Yang Ah-Reum;Kim Hyun-Jung;Seol Jae-Hwan;Kang Young-Jin;Kim Taek-Hoon;Jang Hyun-Seok
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.573-583
    • /
    • 2005
  • [ $PM_{10}\;and\;PM_{2.5}$ ] aerosols were collected at Busan from March, 2004 to December, 2004, and the concentrations of some metal elements were chemically analyzed to study their characteristics. The mean concentration of $PM_{10}$ was $58.2{\mu}g/m^3$ with a range of 8.3 to $161.1{\mu}g/m^3$. The mean concentration of $PM_{2.5}$ was $29.3{\mu}g/m^3$ with a range of 2.8 to $65.3\mu}g/m^3$. The mean mass concentrations of Asian dust and non Asian dust in $PM_{10}$ were $121.5\mu}g/m^3$ and $56.0{\mu}g/,^3$ respectively. The mean values of crustal enrichment factors for six elements (Cd, Cr, Cu, Ni, Pb and Zn) were all higher than 10, possibly suggesting the influence of anthropogenic sources. The crustal enrichment factors of some heavy metal elements in non-Asian dust (NAD) were higher than those in Asian dust (AD), possibly due to anthropogenic emissions transported from industries around this area by westerly wind. The soil contribution ratios for $PM_{10}$ and $PM_{2.5}$ were $15.2\%$ and $17.5\%$ on the whole. and those of AD/NAD for $PM_{10}$ and $PM_{2.5}$ were 1.9 and 2.1, respectively.

CONCENTRATIONS OF MERCURY, CADMIUM, LEAD AND CUPPER IN THE SURROUNDING SEAWATER AND IN SEAWEEDS, UNDARIA PINNNATIFIDA AND SARGASSUM FULVELLUM, FROM SUYEONG BAY IN BUSAN (수영만 양식 미역, 모자반 및 환경해수의 수은, 카드뮴, 납, 구리의 농도에 대하여)

  • KIM Chang Yang;WON Jong Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.169-178
    • /
    • 1974
  • Concentrations of mercury, cadmium, lead and copper are determined in the surrounding seawater and in seaweeds, Undarta pinnatifida and Sargassun fulvellum, from Suyeong Bay in Busan in the spring tide and neap tide from January to April 1974. The range and mean of the heavy metal concentrations in the surrounding seawater are as follows : mercury 0.00-0.39 ppb, 0. 16ppb; cadmium 0.00-0.46 ppb, 0.18 ppb, lead 0.00-0.94 ppb, 0.26 ppb : copper 0.00-0.86 ppb, 0.25 ppb respectively, and the concentrations varied slightly according to the tide. The mean values of concentration rate of Hg, Cd, Pb and Cu in air dry base were $0.42\times10^3(0.13\times10^3\~1.0\times10^3)$, $2.1\times10^3(0.8\times10^3\~4.9\times10^3)$, $8.9\times10^3(3.1\times10^3\~19\times10^3)$ and $15\times10^3(6.0\times10^3\~28\times10^3)$ in the Undaria pinnatifida, and $0.25\times10^3($0.06\times10^3\~0.56\times10^3)$, $1.0\times10^3(0.61\times10^3\~1.7\times10^3)$, $5.4\times10^3(3.1\times10^3\~8.5\times10^3)$ and $22.8\times10^3(14.4\times10^3\~52.4\times10^3)$ in the Sargassun fulvellum. The concentration rate of Hg, Cd and Pb of the Undaria pinnatifida was almost twice as much as that of the Sargassun fulvellum but the concentration rate of copper of the former was slightly smaller than of the latter.

  • PDF

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

Study on Soil Extraction Methods for the Human Health Risk Assessment of Crop Intake Pathway around Abandoned Metal Mine Areas (폐금속광산 지역 농작물섭취경로의 인체위해도 산정을 위한 생물농축계수와 토양분석방법에 관한 연구)

  • Lim, Tae-Yong;Lee, Sang-Woo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.56-66
    • /
    • 2016
  • Generally, the contribution of crop-intake pathway (CIP) is remarkable in human health assessment (HHA) of heavy metal contamination. Although the crop exposure concentrations (Cp) should directly be used for calculating the average daily dose (ADD) of CIP, the soil exposure concentration (Cs) multiplied by soil-crop bio-concentration factor (BCF) has frequently been used instead of using Cp values. Thus, the BCF values are significant in the HHA, and care should be taken to ensure the reasonable acquisition of BCF values. Meanwhile, the BCF values are known to be significantly affected by analytical methods. Nevertheless, they have been calculated from the concentrations of soil and crop analyzed by only one method: total digestion (aqua regia extraction). For this reason, this study was initiated to seek appropriate soil analysis methods for effective computation of the ADD of CIP. The concentrations of 5 metal contaminants (As, Cd, Cu, Pb, and Zn) in 127 soil samples obtained from 4 abandoned metal mine areas were analyzed by several methods including total digestion and partial digestions using 0.1/1 N HCl, 1M $NH_4NO_3$, 0.1 M $NaNO_3$, and 0.01M $CaCl_2$. The heavy metal concentrations in 127 crop samples (rice grains) were analyzed by total digestion as well. Using the concentrations of soils and crops, the BCF values of each contaminant were calculated according to the kind of soil extraction methods applied. Finally, the errors between Cp and $C_s{\times}BCF$ were computed to evaluate the relevance of each method. The results indicate that the partial extraction using 0.1 N and 1 N HCl was superior or equivalent to total digestion. In addition, the 0.1M $NaNO_3$ method combined with total digestion is recommended for improving the reliability of BCF values.

Effect of Application of Water Treatment Sludge on the Yields and Chemical Properties of Soybean(Glycine max) and Carrot(Daucus carota) (정수장슬러지 시용이 대두 및 당근의 수량과 화학적 특성에 미치는 영향)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin;Kim, Young-Han;Lee, Sang-Suk;Lim, Hyun-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.275-281
    • /
    • 1996
  • The objective of the study was to investigate the effects of water treatment sludge (WTS) on the growth of soybean and carrot, and uptake of some inorganic components in the plants. WTS was incorporated to field at the rates of 0, 1, 3, and 5 tons per 10a on the basis of dry weight. With the application of the sludge, OM and CEC in the soil increased slightly while the concentration of available phosphorous decreased. And heavy metals, including Pb, Cd, Cr, As and Hg, were not detected at the harvest stage in crops. With an increase in the application of the sludge, the concentration of phosphorous in the seed of soybean and the root of carrot tended to be decreased. There seems no correlation between rate of application of the sludge and uptake of Al in the plants. The yield of soybean was the highest when applied to one ton sludge and the yield on carrot increased with an increase in rate of applied sludge. Also, the concentration of carotene increased with an increased application of the sludge. But, application of WTS showed to deteriorate the visual quality with an irregularity of carrot's surface. This results indicate that application of WTS will be give a positive and negative effects on soil and crops.

  • PDF

Concentration of metallic elements in surface sediments at a waste disposal site in the Yellow Sea (황해 폐기물 투기해역(서해병) 표층 퇴적물의 금속원소 분포)

  • Koh, Hyuk-Joon;Choi, Young-Chan;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Lee, Chung-Il;Yoon, Han-Sam
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.787-799
    • /
    • 2013
  • The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

The Removal of Nutrients and Heavy Metals Using Household Rain garden (가정용 빗물정원을 이용한 지붕빗물내 영양소 및 중금속 제거)

  • Pak, Gijung;Park, Heesoo;Cho, Yunchul;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • In Korea, most rainfall events occur during summer which then leads to an increasing concern regarding high influx of non-point source pollutants since the pollutant loadings from these non-point sources are very significant. In particular, the first flush of roof-harvested rainfall is said to contain the most highest concentration of nutrients and heavy metals. Accordingly, it is important to develope the possible water quality management options in treating the contaminants and considering reclaimed water reuse. The rain garden could be one of suitable alternatives in addressing this issue. In this study, the development of an effective adsorption media and its application to a lab-scale rain garden was tested to evaluate the removal rate of various nutrient and organic matter (TN, TP, CODcr), and heavy metals (Cu, Cd, Pb). Results showed that carbonized peatmoss produced at higher temperature have better adsorption capacity as compared to the one produced at a lower temperature. When the carbonized peatmoss was applied as rain garden media, the highest removal of TN, TP, and CODcr was observed compared to no carbonized peatmoss applied rain garden. Therefore, this study showed that the carbonized peatmoss would be effectively applied to the rain garden for removing nutrients and heavy metals from roof-harvested rainwater.

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.