• Title/Summary/Keyword: Cavity-backed spiral antenna

Search Result 5, Processing Time 0.022 seconds

Cavity-backed Two-arm Spiral Antenna with a Ring-shaped Absorber for Partial Discharge Diagnosis

  • Kim, Han-Byul;Hwang, Keum-Cheol;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.856-862
    • /
    • 2013
  • A cavity-backed two-arm spiral antenna for partial discharge diagnosis is presented. The proposed antenna consists of a two-arm Archimedean spiral, a tapered microstrip balun as spiral antenna feed, and a ring-shaped absorber-loaded cavity. The Archimedean spiral antenna is designed for the operating frequency band of 0.3 GHz to 1.5 GHz and fed by the tapered microstrip balun. The cavity is utilized to transform the bidirectional beam into a unidirectional beam, thereby enhancing gain. The ring-shaped absorber is stacked in the cavity to reduce the reflected waves from the cavity wall. The proposed antenna is designed and simulated using CST Microwave Studio. A prototype of the proposed antenna is likewise fabricated and tested. The measured radiation patterns are directional to the positive z-axis, and the measured peak gain is 8.13 dBi at a frequency of 1.1 GHz.

UHF Cavity-backed Spiral Antenna for Partial Discharge Diagnosis (부분방전 진단용 UHF cavity-backed 스파이럴 안테나)

  • Kim, Han Byul;Kim, Jin Hyuk;Hwang, Keum Cheol;Shin, Jae Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.89-94
    • /
    • 2012
  • In this paper, a UHF cavity-backed spiral antenna for partial discharge diagnosis is proposed. The proposed antenna consists of two-arm Archimedean spiral, a cavity, and a balun for feeding. The spiral antenna is designed for 0.3-1.5 GHz operating frequency. Two spiral arms of the proposed antenna are fed by a microstrip tapered-balun. In order to enhance the gain, the cavity is located in the back side of the spiral pattern. The proposed antenna is designed and simulated using CST Microwave Studio. The designed antenna is also fabricated and tested to validate performance. The measured radiation patterns are directional to the +z-axis and measured peak gain is 9.92 dBi.

Design of a 0.5~2 GHz Cavity-Backed Spiral Antenna (0.5~2 GHz 캐비티 백 스파이럴 안테나 설계)

  • Jeon, Nam-Du;Shin, Dong-Hoon;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.269-277
    • /
    • 2010
  • In this paper, the design of a 0.5~2 GHz cavity-backed spiral antenna is described. Combined arm pattern with a log spiral in the inner region and an Archimedean spiral in the outer region, a backing cavity, and a Marchand coaxial balun for feeding are designed. Termination resistors are used to improve antenna characteristics at the lower frequency of the operation frequency. VSWR, axial ratio, gain and HPBW(Half Power Beam Width) characteristics are simulated using CST's MWS. Finally, the validity of these approaches is verified by comparing the simulated results with the measured ones. Also, the measurement results are compared with the performance of a commercial spiral antenna.

Design of a 2~18 GHz Wideband Cavity-Backed Spiral Antenna (2~18 GHz 광대역 캐비티 백 스파이럴 안테나 설계)

  • Cho, Jung-Rae;Park, Jin-Oh;You, Byung-Sek;Jeong, Un-Seob;Chung, Woo-Sung;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1166-1174
    • /
    • 2008
  • In this paper, design of a $2{\sim}18$ GHz wideband cavity-backed spiral antenna is investigated. Firstly, an arm pattern and a backing cavity of a cavity-backed spiral antenna are designed based on the design theory of an Archimedean spiral antenna as well as by using CST's MWS. VSWR, axial ratio, and HPBW(Half Power Beam Width) characteristics are considered in the simulation. Secondly, a Marchand coaxial balun is designed to meet the required VSWR within the frequency band of operation. Finally, the validity of these approaches is verified by comparing the simulated results with measured ones.

A Study on the Analysis of Broadband Direction finding Antenna on Aircraft (항공기 탑재된 광대역 방향 탐지용 안테나 분석 연구)

  • Baek, Jong-Gyun;Ji, Sung-Hwan;Mun, Byeonggwi;Lee, Kyung-Won;Kim, Dong-Gyu;Lee, Wang-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.89-95
    • /
    • 2018
  • In this paper, we analyze the antenna performance changes caused by the aircraft structure, diffraction and reflection, when the direction finding antenna used in the aircraft is mounted on the aircraft. Direction finding antenna is an antenna that receives radar threat signal in the direction finding device of aircraft electronic warfare system. Recently, because various antenna are mounted on an aircraft, various analyzes such as antenna performance and interference analysis are required. Therefore, the electromagnetic analysis was carried out by installing a broadband direction finding antenna with 50% bandwidth on simulated aircraft, and the direction finding performance was analyzed by comparing the single antenna performance with the performance mounted on the aircraft. The analyzed direction finding accuracy was $6.47^{\circ}$ RMS and predicted to be suitable as an antenna for aircraft direction finding antenna.