• Title/Summary/Keyword: Cavity mode

Search Result 348, Processing Time 0.021 seconds

A Study on the Acoustic and Cavity-Tone in a Perforated Through-Tube Muffler (다공관 배기 소음기의 음향 모드와 공동음에 관한 연구)

  • Kwon, Y.P;Lee, D.H.;Oh, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • The objective of this study is do obtain the relationship between the acoustic mode and cavity tone induced in a perforated tube exhaust muffler. First, the modal frequency for the axisymmetric radial mode and the mode shape have been computed using the impedance model for the perforated tube. Then, experiment has been perfonned for the onset frequencies of the cavity tone for various design parameters and through-flow. The theoretically obtained modal frequencies are well consistent with the measured onset frequencies of the cavity tone, showing that the cavity tone is induced by the axisymmetric radial mode. And it is found that the modal frequency of a perforated tube muffler is much lower than that of a simple expansion chamber.

  • PDF

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF

A Cavity-Assisted Atom Detector (CAAD) (캐비티-유도된 원자측정 장치)

  • Chough, Young-Tak;Hyuncheol Nha;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.124-125
    • /
    • 2000
  • We introduce a scheme with a maximized efficiency of detecting atoms passing through an optical standing-wave mode cavity. Consider a standing-wave optical cavity illuminated by a weak probe beam through one of its mirrors where the transmission through the other mirror is monitored by a photodetector. If an atom is put in the cavity, the atom-cavity coupling shifts the resonance frequency of the system via the so-called normal mode splitting, and thereby the transmission power will drop. In fact, this type of atom detection scheme has been used in recent single atom trap experiments In practice, however, the field in a standing-wave mode will have a geometrical structure having nodes and antinodes that when the atom traverses the cavity through one of the nodes, there will be no such effect of atom-field interaction. (omitted)

  • PDF

Compensation of Equivalent Circuit Model of TE011 Mode Cylindrical Cavity Filter

  • Ryu, Nam-Young;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.100-104
    • /
    • 2002
  • A proper equivalent circuit model for coupling iris has been derived in order to compensate the length of cavity in a $TE_{011}$TEX> mode cylindrical cavity filter. A method to resolve the difference in bandwidth and feature or ripple systematically has been proposed. This method can be applied to other types of waveguide cavity filter.

3-D Vibration Characteristics of Radial Tire for Passenger Car under Fixed Axle (축으로 고정된 승용차용 레디얼 타이어의 3차원 진동특성)

  • 김용우;남진영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.228-235
    • /
    • 2002
  • Two kinds of experimental modal analyses have been performed on a radial tire for passenger car under fixed axle. One is the modal analysis to obtain three-dimensional modes of tire using accelerometers and the other is the one to identify cavity resonance frequency using a pressure sensor. From the first analysis, we have obtained three-dimensional natural modes and their decomposed 3-D modes in each direction, which make it possible to grasp the features of the modes that cannot be identified in the conventional 2-D modes and to classify the vibrationall modes into symmetric, non-symmetric, and antisymmetric modes in a simple way by using the experimental results. From the second experimental analysis, the cavity resonance frequency is found. Coomparing the results of the two analyses, we have Identified the three-dimensional mode of the cavity resonance. We also haute shown that natural frequencies of structural vibration depends on inflation Pressure while the cavity resonance does not.

The growth rates and tune shifts due to construction errors of RF cavity

  • Nam, Soon-Kwon;Kim, T.Y.;Lee, B.K.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.57-62
    • /
    • 1998
  • The resonance frequencies, shunt impedances and Q-values for the higher-order modes in our designed cavity are calculated by the computer codes URMEL and MAFIA. A new computer code is developed to calculate the complex tune shifts for the randomness of the higher-order mode frequencies due to the construction errors of a cavity. The results with the construction errors are compared to those fo without error cases for the dipole mode and quadrupole mode.

  • PDF

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

A Measurement of Electromagnetic Property of Illite found in Young-dong Area (영동산 일라이트의 전자기적 특성 측정)

  • Kim, Jin-Chul;Lee, Won-Hui;Koo,K.W.;Hur, Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.267-270
    • /
    • 2000
  • This paper describes measurement of relative permittivity of illite found in young-dong area. A measurement of relative permittivity of illite used to cylindrical cavity resonators with moveable cap. A concentric dielectric-rod inserted cylindrical cavity resonator and an exact field representation of travelling wave mode are introduced for measurement of relative permittivity. The exact electromagnetic fields in cylindrical cavity with concentric dielectric rod is analysed. A relative permittivity of dielectric in cavity is calculated by analyzing the characteristic equation. The characteristic equation is solved by using the ContourPlot graph of Mathematica. We know that the field representation of travelling mode is exact. As a result, relative permittivity of dielectric materials were 7.820 at sample-1 and 7.894 at sample-2.

  • PDF

A Syudy on the Resonant Mode Identification in the Dielectric-disc Loaded Cylindrical Cavity Resonators (유전체 디스크가 삽입된 원통형 공동 공진기에서의 공진 모드 구분에 관한 연구)

  • Lee, Won-Hui;Kim, Tai-Shin;Kang, Min-Woo;Koo, Kyung-Wan;Hur, Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.791-794
    • /
    • 2001
  • We described a method resonant mode identification in dielectric-disc loaded cylindrical cavity resonators. The characteristic equation is solved by using the ContourPlot graph of Mathematica. Contour graph method uses graphical method. It is comparable with numerical method. The numerical method is very difficult a mode identification. The analysis based on the approximated electromagnetic representation. This kinds of studies only concentrated on the calculation of resonant frequencies, and a mode identification of resonant frequencies have not been covered. But, the contour graph method to analyze the characteristic equations is simple and all parts of resonant frequency graph can be easily drawn, it is possible to calculate precise resonant frequencies and to identify the mode of resonant frequencies.

  • PDF

A Study on the Resonant Mode Identification in the Dielectric-disc Loaded Cylindrical Cavity Resonatorsv (유전체 디스크가 삽입된 원통형 공동 공진기에서의 공진 모드 구분에 관한 연구)

  • 이원희;김태신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • We described a method of resonant mode identification in dielectric-disc loaded cylindrical cavity resonators. The characteristic equations are solved using the ContourPlot graph of Mathematica. Contour graph method uses graphical method. It is comparable with numerical method. The numerical method is very difficult mode identification. The analysis is based on the approximated electromagnetic representation which is only concentrated on the calculation of resonant frequencies, and a mode identification of resonant frequencies has not been covered. However, It is possible to calculate precise resonant frequencies and to identify the mode of resonant frequencies using the contour graph method. The contour graph method is not a method using approximated representation of electromagnetic field variation at the outer area of dielectric in the resonators. It is a method using enact representation.