• Title/Summary/Keyword: Cavity dimension

Search Result 72, Processing Time 0.026 seconds

Application of Solidification Analysis considering Volumetric Contraction to Riser Design of Steel Castings (주강품 압탕 설계에 체적 수축을 고려한 응고해석의 적용)

  • Kim, Ji-Joon;Kim, Ki-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.494-506
    • /
    • 1995
  • Test castings in plate, disc, and cubic shaped castings for 0.2wt.% carbon and stainless steel have been poured to examine the effects of the riser dimensions including riser neck on the casting soundness. Three empirical methods were chosen in risering of steel castings. A computer program of solidification analysis considering liquid and solidification contraction was developed to apply for riserdesign calculated by using their methods in plate, disc, and cubic shaped castings, and to calculate the position and dimension of shrinkage cavity in complex shaped casting. The potential of present method has been successfully demonstrated by comparing predicted cavity shapes with those obtained in a series of experimental castings. Three empirical methods can be used in a practical way to make a rapid estimation of tie minimum riser diameter, but they can not provide a criterion of casting soundness with shape and material on all occasions. The shape and position of shrinkage cavity can be successfully predicted both using the present method and using risering calculated by their methods regardless of the shape and cast material.

  • PDF

Gate Locations Optimization of an Automotive Instrument Panel for Minimizing Cavity Pressure (금형 내부 압력 최소화를 위한 자동차 인스트루먼트 패널의 게이트 위치 최적화)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Cho, Dong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Cavity pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations of valve gates to minimize the maximum cavity pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the computational time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm equipped in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum cavity pressure was reduced by 17.3% compared to the initial one, which clearly showed the validity of the proposed design approach.

Study on Warm Precision Forging of Half Axle Gears

  • Jie Zhou;Yong Zhang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.152-157
    • /
    • 2003
  • A typical die-set for enclosed-die forging of half axle gears in double action hydraulic press is presented, the important factors those influence on precision forming of half axle gears are analyzed, warm forming process of half axle gears is simulated by FEM software $DEFORM\_3D$. The results show, that proper die structure and dimension, suitable web thickness and position can improve material filling, ensure full filling of tooth cavity.

  • PDF

Full mouth rehabilitation using transfer coping pick up impression in a patient with severe bleeding: A case report (출혈이 심한 환자에서 개별치아 인상채득후 트랜스퍼 코핑 픽업 인상법을 이용한 전악수복증례)

  • Ha, Seung-Ryong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.134-145
    • /
    • 2021
  • In the case of excessively worn dentition, there is often insufficient space for the prosthesis, and if physiologically acceptable, the prosthesis can be fabricated by increasing the vertical dimension of occlusion. Various methods have been introduced to determine the vertical dimension of occlusion. Clinicians have to choose a method that can comfort the patient among several methods. A removable appliance can be used as a reversible method to ensure that the determined vertical dimension of occlusion does not cause physiological problems. When making impressions of many teeth, it is often difficult to make accurate impressions at once. In this case, after making an accurate impression of the individual teeth, a transfer coping was made and a pickup impression was taken in the oral cavity to create a master cast. In this case, a fixed partial denture was fabricated and full mouth rehabilitation was performed by increasing the vertical dimension of occlusion in a patient with excessively worn dentition and lack of space for restoration. As a result of follow-up of the patient for 7 years, satisfactory results were obtained both esthetically and functionally.

FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION (2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Song, Bo-Kyung;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS (유한요소법을 이용한 2급 복합레진 와동의 비교 연구)

  • Rim, Young-Il;Yo, In-Ho;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.428-446
    • /
    • 1997
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

  • PDF

하이퍼볼릭 메타물질: 깊은 서브파장 나노포토닉스를 위한 신개념 플랫폼

  • No, Jun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.78-78
    • /
    • 2015
  • Metamaterials, artificially structured nanomaterials, have enabled unprecedented phenomena such as invisibility cloaking and negative refraction. Especially, hyperbolic metamaterials also known as indefinite metamaterials have unique dispersion relation where the principal components of its permittivity tensors are not all with the same signs and magnitudes. Such extraordinary dispersion relation results in hyperbolic dispersion relations which lead to a number of interesting phenomena, such as super-resolution effect which transfers evanescent waves to propagating waves at its interface with normal materials and, the propagation of electromagnetic waves with very large wavevectors comparing they are evanescent waves and thus decay quickly in natural materials. In this abstract, I will focus discussing our efforts in achieving the unique optical property overcoming diffraction limit to achieve several extraordinary metamaterials and metadevices demonstration. First, I will present super-resolution imaging device called "hyperlens", which is the first experimental demonstration of near- to far-field imaging at visible light with resolution beyond the diffraction limit in two lateral dimensions. Second, I will show another unique application of metamaterials for miniaturizing optical cavity, a key component to make lasers, into the nanoscale for the first time. It shows the cavity array which successfully captured light in 20nm dimension and show very high figure of merit experimentally. Last, I will discuss the future direction of the hyperbolic metamaterial and outlook for the practical applications. I believe our efforts in sub-wavelength metamaterials having such extraordinary optical properties will lead to further advanced nanophotonics and nanooptics research.

  • PDF

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

Effects of Growing Density and Cavity Volume of Containers on the Nitrogen Status of Three Deciduous Hardwood Species in the Nursery Stage (용기의 생육밀도와 용적이 활엽수 3수종의 질소 양분 특성에 미치는 영향)

  • Cho, Min Seok;Yang, A-Ram;Hwang, Jaehong;Park, Byung Bae;Park, Gwan Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.198-209
    • /
    • 2021
  • This study evaluated the effects of the dimensional characteristics of containers on the nitrogen status of Quercus serrata, Fraxinus rhynchophylla, and Zelkova serrata in the container nursery stage. Seedlings were grown using 16 container types [four growing densities (100, 144, 196, and 256 seedlings/m2) × four cavity volumes (220, 300, 380, and 460 cm3/cavity)]. Two-way ANOVA was performed to test the differences in nitrogen concentration and seedling content among container types. Additionally, we performed multiple regression analyses to correlate container dimensions and nitrogen content. Container types had a strong influence on nitrogen concentration and the content of the seedling species, with a significant interaction effect between growing density and cavity volume. Cavity volumes were positively correlated with the nitrogen content of the three seedling species, whereas growing density negatively affected those of F. rhynchophylla. Further, nutrient vector analysis revealed that the seedling nutrient loading capacities of the three species, such as efficiency and accumulation, were altered because of the different fertilization effects by container types. The optimal ranges of container dimension by each tree species, obtained multiple regression analysis with nitrogen content, were found to be approximately 180-210 seedlings/m2 and 410-460 cm3/cavity for Q. serrata, 100-120 seedlings/m2 and 350-420 cm3/cavity for F. rhynchophylla, and 190-220 seedlings/m2 and 380-430 cm3/cavity for Z. serrata. This study suggests that an adequate type of container will improve seedling quality with higher nutrient loading capacity production in nursery stages and increase seedling growth in plantation stages.