• Title/Summary/Keyword: Cavitation flow

Search Result 542, Processing Time 0.023 seconds

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities

  • Yamamoto, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.40-54
    • /
    • 2009
  • Cavitation instabilities in turbo-machinery such as cavitation surge and rotating cavitation are usually explained by the quasi-steady characteristics of cavitation, mass flow gain factor and cavitation compliance. However, there are certain cases when it is required to take account of unsteady characteristics. As an example of such cases, cavitation surge in industrial centrifugal pump caused by backflow vortex cavitation is presented and the importance of the phase delay of backflow vortex cavitation is clarified. First, fundamental characteristics of backflow vortex structure is shown followed by detailed discussions on the energy transfer under cavitation surge in the centrifugal pump. Then, the dynamics of backflow is discussed to explain a large phase lag observed in the experiments with the centrifugal pump.

Inducer Design to Avoid Cavitation Instabilities

  • Kang, Dong-Hyuk;Watanabe, Toshifumi;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.439-448
    • /
    • 2009
  • Three inducers were designed to avoid cavitation instabilities. This was accomplished by avoiding the interaction of tip cavity with the leading edge of the next blade. The first one was designed with extremely larger leading edge sweep, the second and third ones were designed with smaller incidence angle by reducing the inlet blade angle or increasing the design flow rate, respectively. The inducer with larger design flow rate has larger outlet blade angle to obtain sufficient pressure rise. The inducer with larger sweep could suppress the cavitation instabilities in higher flow rates more than 95% of design flow coefficient, owing to weaker tip leakage vortex cavity with stronger disturbance by backflow vortices. The inducer with larger outlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the extension of the tip cavity along the suction surface of the blade. The inducer with smaller inlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the occurrence of the cavity first in the blade passage and its extension upstream. The cavity shape and suction performance were reasonably simulated by three dimensional CFD computations under the steady cavitating condition, except for the backflow vortex cavity. The difference in the growth of cavity for each inducer is explained from the difference of the pressure distribution on the suction side of the blades.

Influence of Thru Holes Near Leading Edge of a Model Propeller on Cavitation Behavior (균일류에서 프로펠러 앞날 근처 관통구가 모형 프로펠러 캐비테이션에 미치는 영향)

  • Ahn, Jong-Woo;Park, Il-Ryong;Park, Young-Ha;Kim, Je-In;Seol, Han-Shin;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.281-289
    • /
    • 2019
  • In order to investigate the influence of thru holes near leading edge of model propeller on cavitation behavior, a model propeller with thru holes was manufactured and tested at Large Cavitation Tunnel (LCT). The pressure distribution around the thru hole on propeller blade was numerically calculated to help understand the local flow characteristics related to cavitation behavior. The model propeller is a five bladed propeller which has 2 blades with thru holes and 3 blades with smooth surface. The cavitation observation tests were conducted at angles of $0^{\circ}$ & $6^{\circ}$ using an inclined-shaft dynamometer in LCT. There are big difference on the suction side cavitation behavior each other due to the existence of thru hole. While the blades with thou holes start generation of the sheet cavitation from the leading edge on the suction side, the blades with smooth surface generate the cloud cavitation from the mid-chord. Cavitation on the blades with thru holes shows more similar behavior to those of the full-scale propeller of which the pipe line for air injection is closed. The numerical analysis result shows that the sharp pressure drop occurs around thru holes on the blade. Consequently, the thru hole around leading edge stimulates the cavitation occurrence and stabilizes the cavitation behavior. Based on these results, the effect of thru holes on propeller cavitation behavior behind a model ship should be studied in the future.

Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

  • Liu, Hou-lin;Wang, Jian;Wang, Yong;Zhang, Hua;Huang, Haoqin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

NUMERICAL ANALYSIS OF MULTIPHASE FLOW BY NUFLEX (NUFLEX를 이용한 다상유동의 수치해석)

  • Yu, Tae-Jin;Suh, Young-Ho;Son, Gi-Hun;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.21-25
    • /
    • 2007
  • A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid) method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.

COMPARISON OF CFD SIMULATION AND EXPERIMENT OF CAVITATING FLOW PAST AXISYMMETRIC CYLINDER (전산해석과 실험의 비교검증을 통한 원통형 수중운동체 주위의 캐비테이션 유동현상 연구)

  • Park, H.M.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc., Thus, cavitating flow simulation is of practical importance for many engineering systems. In this study, a two-phase flow solver based on the homogeneous mixture model has been developed. The flow characteristics around an axisymmetric cylinder were calculated and then validated by comparing with the experimental results in the cavitation water tunnel at the Korea Ocean Research & Development Institute. The results show that this solver is highly suitable for simulating the cavitating flows. After the code validation, the cavity length with changes of water depth, angle of attack and velocity were obtained.. Cavitation inception was also calculated for various operational conditions.

The Numerical Study on the Cavitation (Cavitation 현상에 관한 수치적 연구)

  • Chang Seonyong;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.126-131
    • /
    • 2004
  • A numerical code for cavitation is developed based on pressure-based algorithm. The k-\varepsilon$ model (with wall function) is used for turbulence, and volume transport equation is used for cavitation model. The compressibility is not considered for the flow field is low speed.

  • PDF

Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation (공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.

Two-dimensional Model Tests for Rudder Gap Cavitation and Suppression Devices (타 간극 캐비테이션과 저감장치에 관한 2 차원 모형 실험)

  • Lee, Chang-Min;Oh, Jung-Keun;Rhee, Shin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.122-131
    • /
    • 2010
  • The increasing size and speed of cargo ships result in high speed flow in propeller slipstream, and thereby cavitation is frequently observed on and around a rudder system. Rudder gap cavitation is the most difficult one to control and suppress among various types of the cavitation on a rudder system. In the present study, experiments of the incipient cavitation and pressure measurement were carried out for typical cargo ship rudder sections with and without the suppression devices, which were suggested by the authors. Fundamental understanding of the rudder gap cavitation inception was obtained along with its relevance to the surface pressure distribution. It is confirmed that the gap flow blocking devices effectively suppress the rudder gap cavitation and, at the same time, augment lift.