• Title/Summary/Keyword: Cavitation flow

Search Result 543, Processing Time 0.027 seconds

Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow (수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF

Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method (수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.746-753
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

A Study on a Simulation of a Fuel Injection System in a Large Low-Speed Marine Diesel Engines (박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구)

  • 강정석;이창식;조권회;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.43-52
    • /
    • 2000
  • In this study, a simulation program was developed, which could simulate a fuel injection system for low-speed marine diesel engine. The fuel injection system was divided into fuel injection pump, high pressure pipe and fuel injection valve. The unsteady flow in the high pressure injection pipe was analyzed by the method of characteristics, considering cavitation and variation of fuel density and bulk modulus. It was confirmed that the simulation results were good agree with experimental results of injection pressure and quantity at the high pressure distributor in fuel injection system for the training ship "M/V Hannara". And the effects of the atomizer hole diameter, maximum needle lift, plunger diameter and nozzle opening pressure were also investigated with simulating results.g results.

  • PDF

An Experimental Study on Standard Establishment of Sump Model Test in Pump Station (펌프장 Sump 모델 시험기준 수립을 위한 실험 연구)

  • Lee, L.Y.;Kim, B.S.;Lee, D.G.;Oh, Y.M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.582-588
    • /
    • 2005
  • An experimental study to establish a standard of sump model test of pump station was implemented. Comparison of foreign standard was also performed. Configuration condition around a bell mouth suction intake was easily adjusted by 3-axis traversing system and partition allocation. Operational condition was also varied widely to give accurate test data. PIV was also introduced to produce Quantitative analysis of flow field such as free-surface vortex and submerged vortex occurring in the model test. More detailed vortex behaviors were represented by PIV analysis.

  • PDF

Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method (수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.666-671
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

  • PDF

In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Using X-ray Micro-imaging Technique (X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측)

  • Kim, Yang-Min;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1693-1696
    • /
    • 2004
  • Synchrotron X-ray micro-imaging technique was employed to monitor non-invasively the refilling process of water inside the xylem vessels in bamboo leaves. The consecutive phase-contrast X-ray images clearly show both plant anatomy and the transport of water inside the xylem vessels. Traces of water-rise, vapor bubbles and variations of contact angle between the water front and the xylem wall were measured in real time. During the refilling process, air bubbles are removed when the rising water front halts at a vessel end for a while. Subsequently, it starts rising again at a higher velocity than the normal refilling speed. Repeated cavitation seems to deteriorate the refilling ability in xylem vessels. In dark environment, the water refilling process in xylem vessels is facilitated more effectively than in bright illuminated conditions. Finally, X-ray micro-imaging was famed to be a powerful, high resolution, real time imaging tool to investigate the water refilling process in xylem vessels.

  • PDF

Vortex-Induced Vibration of Flexible Cylinders Having Different Mass Ratios (원통형 부재의 질량비에 따른 와유기진동 특성연구)

  • Tae-Young Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 1991
  • A series of experiments were performed to see the dependence of the response characteristics of vortex-induced vibration of flexible cylinders on mass rations for marine applications. Experiments were conducted in the $60cm{\times}60cm$ test section of the cavitation tunnel at the Korea Research Institute of Ships and Ocean Engineering using 5 test rods of 60cm length and 6mm diameter with different mass ratios. It was confirmed quantitatively from the experiments that the low mass ratio cylinders have much broader flow velocity range of large amplitude vibrations than high mass ratio ones.

  • PDF

Application of Coanda Effects to a Ship Hydrofoil

  • Oh, Jung-Keun;Ahn, Hae-Seong;Kim, Hyo-Chul;Lee, Seung-Hee;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.2
    • /
    • pp.29-39
    • /
    • 2003
  • A Coanda foil is a high-lift generating device exploiting the phenomena that flow separation is delayed if a high-speed jet is applied tangential to the surface as well known to the aerodynamic fields. In the present study, a Coanda foil with a flap is investigated to seek the possibility of marine application. Model experiments are carried out both in a towing tank and cavitation tunnel and surface pressure distributions, forces and moments acting on the foil are measured at the various angle of attacks and flap angles. The results are also compared to the numerical ones to show good agreements. The results of the present study demonstrate the practical applicability of the Coanda foil in the design of ship control surfaces.

A Study on the Uniform Thickness Distribution in Superplastic Blow Forming Process (초소성 블로우 성형품의 두께분포 균일화 연구)

  • Lee, Jeong-Hwan;Kim, Hyeon-Cheol;Lee, Yeong-Seon;Lee, Sang-Yong;Sin, Pyeong-U
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.610-619
    • /
    • 1998
  • The superplastic blow forming technology has advantages of cost reduction and low material consumption. compared to the conventional sheet metal forming technology due to the capability of precisely forming with high elongation and low flow stress. however it has a disadvantage that its partial thickness distribution is non-uniform. A processing technology like diaphragm forming has been developed even though it is difficult to prepare materials for superplastic blow forming. in this study a hemisphere forming of sheet before superplastic forming. It was found that the rotary forming material was less in quantity of cavitation at pole than that of hemisphere part that was superplastic formed without rotary forming treatment. Also discussed are the critical strain which is closely related to cavity shape and size.

  • PDF

The prediction of ventilated supercavitation shapes according to the angle of attack of a circular cavitator (원형 캐비테이터의 받음각에 따른 환기초공동 형상 예측 연구)

  • Yi, Jong-Ju;Kim, Min-Jae;Paik, Bu-Geun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.22-30
    • /
    • 2021
  • Ventilated cavity shapes by varying angle of attack of a circular cavitator were predicted based on Logvinovich's Independence Principle in order to verify the cavity shape prediction method. The prediction results were compared with model experiments conducted in the high-speed cavitation tunnel. In the prediction of the cavity centerline, the movement of the cavity centerline due to the effect of gravity and cavitator's angle of attack were well predicted. In the prediction of the cavity contour, it was found that the cavity edge prediction error increased as the angle of attack increased. The error of the upper cavity contour was small at the positive angle of attack, and the error of the lower cavity contour was small at the negative angle of attack.