• Title/Summary/Keyword: Cavitation detection

Search Result 21, Processing Time 0.03 seconds

Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing (연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법)

  • Lee, Hee-chang;Kim, Tae-hyeong;Sohn, Kwon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.

Detection of Noise Sources in a Cavitation Tunnel by using Beam-Forming Method (빔형성 기법을 이용한 공동수조 내부의 소음원 탐지)

  • 이정학;서종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.749-754
    • /
    • 2003
  • In this paper, we introduce the measurement of the underwater noise with 32channel hydrophone array of Samsung CAvitation Tunnel (SCAT) and the detection technique of noise sources by using the beam-forming method. Measurement and way signal Processing under fluid flow are essential works for the underwater acoustics, especially for the detection of noise sources. As the acoustic impedance of the water is relatively high and the tunnel is an enclosed system, we have to consider the interaction between tunnel and water together with the reflection of noise in the beam-forming technique. Also, for a hydrophone array system that is fixed on one side of tunnel wall as done in SCAT is liable to suffer from some limitations in the detection of the noise sources with the array, we discuss these limitations particularly on the frequency range and spacing of noise sources.

  • PDF

Cavitation signal detection based on time-series signal statistics (시계열 신호 통계량 기반 캐비테이션 신호 탐지)

  • Haesang Yang;Ha-Min Choi;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.400-405
    • /
    • 2024
  • When cavitation noise occurs in ship propellers, the level of underwater radiated noise abruptly increases, which can be a critical threat factor as it increases the probability of detection, particularly in the case of naval vessels. Therefore, accurately and promptly assessing cavitation signals is crucial for improving the survivability of submarines. Traditionally, techniques for determining cavitation occurrence have mainly relied on assessing acoustic/vibration levels measured by sensors above a certain threshold, or using the Detection of Envelop Modulation On Noise (DEMON) method. However, technologies related to this rely on a physical understanding of cavitation phenomena and subjective criteria based on user experience, involving multiple procedures, thus necessitating the development of techniques for early automatic recognition of cavitation signals. In this paper, we propose an algorithm that automatically detects cavitation occurrence based on simple statistical features reflecting cavitation characteristics extracted from acoustic signals measured by sensors attached to the hull. The performance of the proposed technique is evaluated depending on the number of sensors and model test conditions. It was confirmed that by sufficiently training the characteristics of cavitation reflected in signals measured by a single sensor, the occurrence of cavitation signals can be determined.

Cavitation Mode Analysis of Pump Inducer

  • Lee, Seungbae;Jung, Keun-Hwa;Kim, Jin-Hwa;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1497-1510
    • /
    • 2002
  • The onset of cavitation causes head and efficiency of a main pump to be reduced significantly and generates vibration and noise. In order to avoid these phenomena, the inlet of the pump is fitted with a special rotor called an inducer, which can operate satisfactorily with extensive cavitation. The motivation of this study is to find out cavitation modes from the inducer inlet pressure signals and event characteristics from outlet ones at various operating conditions. The cavitation modes are analyzed by using a cross-spectral density of fluctuating pressures at the inducer inlet. The time-frequency characteristics of wall pressures downstream of the inducer are presented in terms of event frequency, its duration time, and number of events by using the Choi-Williams distribution.

Design of Cavitation-Resistive Pump Inducer (공동현상을 고려한 펌프 인듀서 설계)

  • Jung, Keun-Hwa;Ahn, Kwang-Woon;Lee, Seungbae;Kim, Jin-Hwa;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.185-190
    • /
    • 2001
  • The cavitation causes suction performance and efficiency of the high-speed pump to be reduced significantly To diminish these effects, the inducer has been used. Most of the inducer is designed at a maximum efficiency point of the pump, therefore suction performance drop due to effects of flow separation and inlet inverse flow is often observed at off-design point. The objective of this study is to find out the cavitation modes at various conditions by applying event detection technique and to design an inducer reducing cavitation. The pressure fluctuations at each cavitating condition were measured at inducer inlet and outlet locations using pressure transducers, which were located 90 degrees apart from each other to identify the cavitation modes. The time-frequency characteristics were analyzed by using Choi-williams distribution. In the second part of this paper, the inducer design method which uses nominal performance characteristic and onset condition of cavitation is introduced and applied to real situation.

  • PDF

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Maximum Likelihood Classifier Using Detection of Amplitude Modulation Frequency due to Propulsion of Underwater Vehicle (수중 프로펠러 추진체에 의한 진폭변조 신호의 주파수 탐지에 의한 Maximum Likelihood Classifier)

  • 강성현;김의준;윤원식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.47-53
    • /
    • 2000
  • In order to classify the underwater vehicles due to propeller propulsion, maximum likelihood classifier was developed. Propeller produces the cavitation and noise during its work. Cavitation-bubble makes the nonlinear medium in the water. The nonlinearity of cavitation leads to the generation of a complete spectrum of combination harmonics of the tonals of noise, and modulation of cavitation noise with propeller shaft-rates and blade-rates. The optimal estimator was derived mathematically and its capabilities were proven by simulation and real test.

  • PDF

Study on estimation of propeller cavitation using computer vision (컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구)

  • Taegoo, Lee;Ki-Seong, Kim;Ji-Woo, Hong;Byoung-Kwon, Ahn;Kyung-Jun, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.

NEUTRON-INDUCED CAVITATION TENSION METASTABLE PRESSURE THRESHOLDS OF LIQUID MIXTURES

  • Xu, Y.;Webster, J.A.;Lapinskas, J.;Taleyarkhan, R.P.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.979-988
    • /
    • 2009
  • Tensioned metastable fluids provide a powerful means for low-cost, efficient detection of a wide range of nuclear particles with spectroscopic capabilities. Past work in this field has relied on one-component liquids. Pure liquids may provide very good detection capability in some aspects, such as low thresholds or large radiation interaction cross sections, but it is rare to find a liquid that is a perfect candidate on both counts. It was hypothesized that liquid mixtures could offer optimal benefits and present more options for advancement. However, not much is known about radiation-induced thermal-hydraulics involving destabilization of mixtures of tensioned metastable fluids. This paper presents results of experiments that assess key thermophysical properties of liquid mixtures governing fast neutron radiation-induced cavitation in liquid mixtures. Experiments were conducted by placing liquid mixtures of various proportions in tension metastable states using Purdue's centrifugally-tensioned metastable fluid detector (CTMFD) apparatus. Liquids chosen for this study covered a good representation of both thermal and fast neutron interaction cross sections, a range of cavitation onset thresholds and a range of thermophysical properties. Experiments were devised to measure the effective liquid mixture viscosity and surface tension. Neutron-induced tension metastability thresholds were found to vary non-linearly with mixture concentration; these thresholds varied linearly with surface tension and inversely with mixture vapor pressure (on a semi-log scale), and no visible trend with mixture viscosity nor with latent heat of vaporization.

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.