• Title/Summary/Keyword: Cavitation Erosion

Search Result 155, Processing Time 0.027 seconds

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.

Introduction and Feasibility on a New Technology for the Pipe Wall Thinning Evaluation of Nuclear Power Plants (원전 배관감육 평가를 위한 새로운 기법의 도입 및 타당성)

  • Hwang, Kyeong Mo;Yun, Hun;Park, Hyun Cheol
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • A huge number of carbon steel piping components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the piping components. To manage the wall thinning degradation, most of utilities in the world predict the wall thinning rate based on the computational program such as CHECWORKS, COMSY, and BRT-CICERO, evaluate the UT (Ultrasonic Test) data, and determine next inspection timing, repair or replacement, if needed. There are several evaluation methods, such as band, blanket, and strip methods, commonly used for determining the wear of piping components from single UT inspection data. It has been identified that those single UT evaluation methods not only do not consider the manufacturing features of pipes, but also may exclude the data of the most thinned point when determining the representative wear rate of piping components. This paper describes a newly developed single UT evaluation method, E-Cross method, for solving above problems and introduces application examples for several pipes and elbows. It was identified that the E-Cross method using the length and width of UT data excluded the most thinned points appropriate as the single UT evaluation method for thinned piping components.

Effects of shot peening stand-off distance on electrochemical properties for surface modification of ALBC3 alloy (ALBC3 합금의 표면 개질을 위한 쇼트피닝 분사거리가 전기화학적 특성에 미치는 영향)

  • Han, Min-Su;Hyun, Koang-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.233-238
    • /
    • 2013
  • In the case of casting materials or ductile materials for marine equipment, it is common to employ a surface modification for achieving cost reduction and improvement in strength. In particular, aluminium bronze ALBC3 exhibits excellent corrosion resistance, and thus widely used for marine application. However, application of the material under high-velocity seawater flow may induce electrochemical corrosion damage and physical damage such as cavitation erosion, leading to shorter service life of equipment. In this study, surface modification was carried out on ALBC3 alloy for different shot peening stand-off distances, and the physical hardness and electrochemical characteristics before and after modification were investigated. The results in each case showed the hardness increase in comparison with non-peened specimen, and the maximum hardness improvement(50 %) was found in 10 cm of shot-peening stand-off distance. It is observed that the electrochemical characteristics were irrelevant to application of shot peening.

Development of wall-thinning evaluation procedure for nuclear power plant piping - Part 2: Local wall-thinning estimation method

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2119-2129
    • /
    • 2020
  • Flow-accelerated corrosion (FAC), liquid droplet impingement erosion (LDIE), cavitation and flashing can cause continuous wall-thinning in nuclear secondary pipes. In order to prevent pipe rupture events resulting from the wall-thinning, most NPPs (nuclear power plants) implement their management programs, which include periodic thickness inspection using UT (ultrasonic test). Meanwhile, it is well known in field experiences that the thickness measurement errors (or deviations) are often comparable with the amount of thickness reduction. Because of these errors, it is difficult to estimate wall-thinning exactly whether the significant thinning has occurred in the inspected components or not. In the previous study, the authors presented an approximate estimation procedure as the first step for thickness measurement deviations at each inspected component and the statistical & quantitative characteristics of the measurement deviations using plant experience data. In this study, statistical significance was quantified for the current methods used for wall-thinning determination. Also, the authors proposed new estimation procedures for determining local wall-thinning to overcome the weakness of the current methods, in which the proposed procedure is based on analysis of variance (ANOVA) method using subgrouping of measured thinning values at all measurement grids. The new procedures were also quantified for their statistical significance. As the results, it is confirmed that the new methods have better estimation confidence than the methods having used until now.

An Electrochemical Study on the Corrosion Property of Materials for Sea Water Heat Exchange System (해수 열교환기용 재료의 부식특성에 관한 전기 화학적 연구)

  • 김진경;김강희;김성종;박근현;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.99-107
    • /
    • 2002
  • Recently all kinds of structural materials are subjected to the severe corrosive environment. Especially corrosion problems of heat exchanger such as galvanic corrosion, erosion and cavitation raised by both contaminated solution and high velocity of fluid to increase cooling effect of heat exchanger have been frequently reported in these days. In this study two kinds of sheet materials and five kinds of tube materials are used for galvanic corrosion characteristics and their corrosion current density calculation. The tube materials having the most galvanic corrosion resistance between tube and sheet of heat exchanger were Al Brass(68700) and Al Brass(C6872TS) and although Ti tube predominantly indicated the highest individual corrosion resistance among those five tube materials. it appeared that Ti tube can be allowed as sheet materials to get galvanic corrosion easily. However it is considered that Cu-Ni tube materials is not only easy to produce galvanic corrosion significantly between tube and sheet regardless of kinds of sheet materials but also is appeared considerably its own high corrosion current density

Cavitation Erosion Behavior in Seawater of Shot Peened Gray Cast Iron (쇼트피닝 처리된 회주철의 해수 내 캐비테이션 침식 손상 거동)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.111-111
    • /
    • 2017
  • 쇼트피닝 기술은 크게 피로강도 향상을 위한 쇼트피닝(shot peening), 재료의 청정 및 도장 품질 향상을 위한 쇼트블라스트(shot blast) 그리고 쇼트피닝 시 판재의 변형되는 성질을 이용한 핀포밍(peen forming) 등으로 구분할 수 있다. 그 중 본 연구에서는 해양산업 분야에서 널리 사용되는 회주철의 효과적인 내구성 향상을 위해 쇼트피닝 기술을 적용하였다. 그러나 쇼트피닝 기술 적용에 있어서 가장 중요한 것은 제품의 균일성, 정확성, 신뢰성을 확보하기 위해 쇼트피닝 강도를 제어하는 여러 가지 변수들에 대하여 최적 상태를 유지하는 것이다. 따라서 회주철에 대한 최적 쇼트피닝 분사조건 규명작업은 반드시 쇼트피닝 가공 전에 수반되어야만 한다. 그 일환으로 실험은 쇼트피닝 분사시간과 분사압력을 변수로 하여 회주철 표면에 적용하였으며, 기계적 특성 평가를 통해 최적의 쇼트피닝 조건을 규명하고자 하였다. 쇼트피닝 분사조건에 따른 회주철의 내구성을 평가하기 위해 캐비테이션 실험을 실시하였으며, 경도 측정, 횡단면 관찰 및 표면의 3D 현미경 관찰 등을 통해 기계적 특성을 분석하였다. 캐비테이션 실험은 ASTM G32 규정에 의거하여 천연해수 내 $30^{\circ}C$에서 $50{\mu}m$의 진폭으로 실시하였다. 실험 후에는 주사전자현미경으로 손상표면을 관찰하였으며, 손상 정도를 비교하기 위해 무게 감소량을 계측하여 상호 비교/분석하였다.

  • PDF

Cavitation Erosion-Corrosion Characteristics in Seawater of Heat-Treated Electroless Nickel Plating Layer (열처리된 무전해 니켈도금 층의 해수 내 캐비테이션 침식-부식 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.108-108
    • /
    • 2018
  • 무전해 니켈도금 층은 마모, 마찰, 스크래치, tribology 등에 대한 내구성뿐만 아니라 내식성도 우수하여 산업현장에서 널리 적용되고 있다. 일반적으로 무전해 니켈도금 층의 내구성은 경도 값과 직접적인 상관관계를 가지며, 그 값은 약 $400-500H_V$ 정도이다. 이러한 무전해 도금 층에 대하여 약 $400^{\circ}C$에서 1시간 정도 열처리를 실시하면 경도 값은 약 $800-1000H_V$ 정도로 현저히 증가되고 내구성 역시 크게 향상시킬 수 있다. 그러나 해양환경에서 발생되는 캐비테이션 침식 부식에 대한 무전해 니켈도금 층의 열처리에 관한 연구는 거의 전무한 상태이다. 따라서 본 연구에서는 회주철의 캐비테이션 침식 부식을 방지하기 위해 무전해 니켈도금 후 다양한 온도와 시간으로 열처리를 실시하여 도금 층의 캐비테이션 침식 부식 특성을 평가하고자 하였다. 무전해 니켈코팅을 위한 모재는 회주철(FC250)을 $19.5mm{\times}19.5mm{\times}5mm$의 크기로 가공하였다. 도금조로 500mL 비커를 사용하였으며, 모든 시험편은 2시간 동안 무전해 니켈도금을 실시하였다. 그리고 캐비테이션 실험은 ASTM G32 규정에 의거하여 천연해수 내 $30^{\circ}C$에서 $50{\mu}m$의 진폭으로 실시하였다. 그 결과 열처리 적용 시 EN 도금의 표면경도가 현저히 증가하여 캐비테이션 침식 부식 저항성이 상당히 개선되었다.

  • PDF

A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique (다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Do-Hyeong;Lee, Sang-Gok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

Apparatus on Corrosion Protection and Marine Corrosion of Ship (선박의 해양 부식과 부식방지 장치)

  • Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

A Numerical Study on Tip Rake HAT Impeller Performance for Tidal Stream Power (조류발전용 팁 레이크 HAT 임펠러 성능 수치해석 연구)

  • Shin, Byung-Chul;Kim, Moon-Chan;Do, In-Rok;Rhee, Shin-Hyung;Hyun, Beom-Soo;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • The present study deals with the investigation about the improvement of performance of tidal stream turbine blade (HAT) with tip rake. HAT impeller has sometimes experienced noise and vibration by Tip vortex which causes even erosion and severe efficiency loss to the blade, The newly proposed tip rake impeller can make the tip vortex week compared with a normal impeller by preventing the three dimensional effect at tip region. In order to find out the optimum rake impeller, three cases have been designed and the performance of the designed rake impellers has been validated by the commercial CFD code(Fluent). The efficiency of optimized rake impeller was up to 4.6% higher than the conventional impeller. The more parametric study for high efficiency and good cavitation performance is expected to be conducted in a near future.