• Title/Summary/Keyword: Cause classification

Search Result 710, Processing Time 0.025 seconds

Headache in the Retropharyngeal Abscess -A case report- (후인후부 농양에 의한 두통 -증례 보고-)

  • Lee, Young-Bok;Yoon, Kyung-Bong;Yoon, Kyoung-Seop
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.191-194
    • /
    • 1996
  • Headache is one of the most frequent discomforts in human. Its significance is often abstruse, as it may signal serious disease or represent only tension, fatigue, or a migrainous disorder. The International Headache Society(HIS) has developed a new classification and definition system of headache. Retropharyngeal tendinitis is an accepted cause of headache in the list of HIS classification. We experienced an reported a case of retropharyngeal abscess with severe occipital headache.

  • PDF

Classification of PVC(Premature Ventricular Contraction) using Radial Basis Function network (Radial Basis Function 네트워크를 이용한 PVC 분류)

  • Lee, J.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.439-442
    • /
    • 1997
  • In our research, we will extract diagnostic parameters by LPC method and wavelet transform. Then, we will design artificial neural network which is based on RBF that can express input features in terms of fuzzy. Because PVC(Premature Ventricular Contraction) has possibility to cause heart attack, the detection of PVC is a very significant problem. To deal with this problem, LPC method which gives different coefficients or different morphologies and wavelet transform which has superior localization nature of time-frequency, are used to extract effective parameters or classification of normal and PVC. Because RBF network can allocate an input feature to the membership degree of each category, total system will be more flexible.

  • PDF

Deep learning for stage prediction in neuroblastoma using gene expression data

  • Park, Aron;Nam, Seungyoon
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.30.1-30.4
    • /
    • 2019
  • Neuroblastoma is a major cause of cancer death in early childhood, and its timely and correct diagnosis is critical. Gene expression datasets have recently been considered as a powerful tool for cancer diagnosis and subtype classification. However, no attempts have yet been made to apply deep learning using gene expression to neuroblastoma classification, although deep learning has been applied to cancer diagnosis using image data. Taking the International Neuroblastoma Staging System stages as multiple classes, we designed a deep neural network using the gene expression patterns and stages of neuroblastoma patients. Despite a small patient population (n = 280), stage 1 and 4 patients were well distinguished. If it is possible to replicate this approach in a larger population, deep learning could play an important role in neuroblastoma staging.

Guitar Tab Digit Recognition and Play using Prototype based Classification

  • Baek, Byung-Hyun;Lee, Hyun-Jong;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.19-25
    • /
    • 2016
  • This paper is to recognize and play tab chords from guitar musical sheets. The musical chord area of an input image is segmented by changing the image in saturation and applying the Grabcut algorithm. Based on a template matching, our approach detects tab starting sections on a segmented musical area. The virtual block method is introduced to search blanks over chord lines and extract tab fret segments, which doesn't cause the computation loss to remove tab lines. In the experimental tests, the prototype based classification outperforms Bayesian method and the nearest neighbor rule with the whole set of training data and its performance is similar to that of the support vector machine. The experimental result shows that the prediction rate is about 99.0% and the number of selected prototypes is below 3.0%.

A Study on the Safety of Reuse Work Plate by Performance Test (재사용 작업대 성능시험을 통한 안전성 검토)

  • Choi, Jin-Woo;Choi, Don-Hoeng;Go, Seong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.43-46
    • /
    • 2011
  • The work plate in a construction sites is a frequent cause of falling. But the bulk of the work plates lent to the construction site are handled carelessly by workers. There is general concern about performance declining by repetitive use. However, there is not a accurate guide, research and study on reuse work plate. This study was conducted in order to judge the classification guide to reuse work plate and measure the performance of classified reuse work plates. It is the result that even the A-grade plates classified to be in good shape by workers are below the performance standard. This means that the guide and classification are ineffective.

Application and evaluation of machine-learning model for fire accelerant classification from GC-MS data of fire residue

  • Park, Chihyun;Park, Wooyong;Jeon, Sookyung;Lee, Sumin;Lee, Joon-Bae
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.231-239
    • /
    • 2021
  • Detection of fire accelerants from fire residues is critical to determine whether the case was arson or accidental fire. However, to develop a standardized model for determining the presence or absence of fire accelerants was not easy because of high temperature which cause disappearance or combustion of components of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine performances of random forest and support vector machine models.

A Study on the Analysis of Aviation Safety Data Structure and Standard Classification (항공안전데이터 구조 분석 및 표준 분류체계에 관한 연구)

  • Kim, Jun Hwan;Lim, Jae Jin;Lee, Jang Ryong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.89-101
    • /
    • 2020
  • In order to enhance the safety of the international aviation industry, the International Civil Aviation Organization has recommended establishing an operational foundation for systematic and integrated collection, storage, analysis and sharing of aviation safety data. Accordingly, the Korea aviation industry also needs to comprehensively manage the safety data which generated and collected by various stakeholders related to aviation safety, and through this, it is necessary to previously identify and remove hazards that may cause accident. For more effective data management and utilization, a standard structure should be established to enable integrated management and sharing of safety data. Therefore, this study aims to propose the framework about how to manage and integrate the aviation safety data for big data-based aviation safety management and shared platform.

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

Skeleton Model-Based Unsafe Behaviors Detection at a Construction Site Scaffold

  • Nguyen, Truong Linh;Tran, Si Van-Tien;Bao, Quy Lan;Lee, Doyeob;Oh, Myoungho;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.361-369
    • /
    • 2022
  • Unsafe actions and behaviors of workers cause most accidents at construction sites. Nowadays, occupational safety is a top priority at construction sites. However, this problem often requires money and effort from investors or construction owners. Therefore, decreasing the accidents rates of workers and saving monitoring costs for contractors is necessary at construction sites. This study proposes an unsafe behavior detection method based on a skeleton model to classify three common unsafe behaviors on the scaffold: climbing, jumping, and running. First, the OpenPose method is used to obtain the workers' key points. Second, all skeleton datasets are aggregated from the temporary size. Third, the key point dataset becomes the input of the action classification model. The method is effective, with an accuracy rate of 89.6% precision and 90.5% recall of unsafe actions correctly detected in the experiment.

  • PDF

Abnormality Detection Control System using Charging Data (충전데이터를 이용한 이상감지 제어시스템)

  • Moon, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.313-316
    • /
    • 2022
  • In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.