References
- Fass L. Imaging and cancer: a review. Mol Oncol 2008;2:115-152. https://doi.org/10.1016/j.molonc.2008.04.001
- Asri H, Mousannif H, Moatassime HA, Noel T. Using machine learning algorithms for breast cancer risk prediction and diagnosis. Proc Comput Sci 2016;83:1064-1069. https://doi.org/10.1016/j.procs.2016.04.224
- Agrawal S, Agrawal J. Neural network techniques for cancer prediction: a survey. Proc Comput Sci 2015;60:769-774. https://doi.org/10.1016/j.procs.2015.08.234
- Jakimovski G, Davcev D. Using double convolution neural network for lung cancer stage detection. Appl Sci 2019;9:427. https://doi.org/10.3390/app9030427
- Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer 2019;5:157-169. https://doi.org/10.1016/j.trecan.2019.02.002
- Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015;13:8-17. https://doi.org/10.1016/j.csbj.2014.11.005
- Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet 2019;51:12-18. https://doi.org/10.1038/s41588-018-0295-5
- Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991-D995. https://doi.org/10.1093/nar/gks1193
- Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015;19:A68-A77.
- Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers 2016;2:16078. https://doi.org/10.1038/nrdp.2016.78
- Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018;48:214-241. https://doi.org/10.1093/jjco/hyx176
- Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a paradigm for big data science in pediatric oncology. Int J Mol Sci 2016;18:E37.
- Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 2011;261:243-257. https://doi.org/10.1148/radiol.11101352
- Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet 2013;45:279-284. https://doi.org/10.1038/ng.2529
- Rajbhandari P, Lopez G, Capdevila C, Salvatori B, Yu J, Rodriguez-Barrueco R, et al. Cross-cohort analysis identifies a TEAD4-MYCN positive feedback loop as the core regulatory element of high-risk neuroblastoma. Cancer Discov 2018;8:582-599. https://doi.org/10.1158/2159-8290.CD-16-0861
- Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (ODSI '16), 2016 Nov 2-4, Savannah, GA, USA. Berkeley: The Advanced Computing Systems Association, 2016. pp. 265-283.
- Kautz T, Eskofier BM, Pasluosta CF. Generic performance measure for multiclass-classifiers. Pattern Recognit 2017;68:111-125. https://doi.org/10.1016/j.patcog.2017.03.008