• Title/Summary/Keyword: Cation mixing

Search Result 61, Processing Time 0.026 seconds

Effects of Source and Mixing Ratio of Topsoil onPhysicoChemical Properties of Green (토양개량제 혼합비율이 Green Topsoil의 물리 화학성에 미치는 영향)

  • 박찬무;한동식;황규석;이용범
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.59-68
    • /
    • 1991
  • This experiment was carried out to investigate the mixing ratio of soil amending materials such as peat perlite, active carbon and zeolite for improvements of physiochemical properties of topsoil, of creeping bentgrass (Agrostis palustris var. Penncross). The results were as followed :1.Appropriate addition of soil improvement material was increased the soil porosity due to the decrease of bulk density. Over supplement of soil improvement material induced the decrease of infiltration of water into soil.2Content of organic matter was increased in treatment of peat and active carbon . Soil reaction was decreased in peat treatment, but increased in perlite, zeolite and active carbon. Exchangeable cation capacity was increased by the addition of all kinds of soil improvement materials used in this experiment.

  • PDF

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Searching the Natural Tracers for Separation of Runoff Components in a Small Forested Catchment (산림소유역에서 주요 유출성분 분석을 위한 천연추적자의 탐색)

  • Yoo, Jaeyun;Kim, Kyongha;Jun, Jaehong;Choi, Hyungtae;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • This study was conducted to find end-members and tracers which are effective to be applied in the End Member Mixing Analysis (EMMA) model for runoff separation at the Gwangneung coniferous forest catchment (13.6ha), Gyeonggido, Korea. We monitored three successive rainfall events during two weeks from June 26, 2005 to July 10, 2005, and analysed chemical properties of rainfall, throughfall, stemflow, groundwater and soil water considered as main components of storm runoff. The followings are the results of analyses of each component and tracer. Groundwater, soil water and rainfall (or throughfall) were dominant runoff components. Rainfall and groundwater were selected as main components for the two components-one tracer mixing model, and groundwater, soilwater and throughfall were selected as main components for the three components-two tracers mixing model. Tracers were selected from anion ($Cl^-$ and ${SO_4}^{2-}$), cation ($Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$) and Acid Neutralizing Capacity (ANC) in event 1, 2, and 3. $Na^+$, $Ca^{2+}$ and ANC were selected in the two components-one tracer mixing model and ${SO_4}^{2-}-K^+$, ${SO_4}^{2-}-Na^+$, ${SO_4}^{2-}-Ca^{2+}$, ${SO_4}^{2-}$-ANC, and $Ca^{2+}$-ANC were selected in the three components-two tracers mixing model. Selected main runoff components and tracers can provide basic information to determine the contribution rate of each runoff component and identify the runoff process in a forest watershed.

Dewatering characteristics of sludge generating water treatment plant (정수장슬러지의 탈수특성)

  • Kim, Eun-Ho;Lee, Mi-Kyung;Kim, Hyeong-Seok;Sung, Nak-Chang;Heo, Jong-Soo;Hwang, Young-Gi
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.316-320
    • /
    • 1999
  • The purpose of this research was to estimate dewatering characteristics of generating water treatment plant by dewatering velocity, suitable polymer and mixing condition. Zeta potential of sludge in storage tank was negative and in case of adding cation, anion and nonion polymer for sludge conditioning, specific resistance coefficients of conditioned sludge were similar at zeta potential -5㎷. But above zeta potential -15㎷, canon polymer was more effective than others for reduction of specific resistance coefficients. Using of cation acrylate polymer showed better dewatering coefficients than cation methacrylate polymer.

  • PDF

Preparation and Desalination Characteristics of Highly Durable Heterogeneous Cation-exchange Membrane Based on Polyvinylidene Fluoride (PVDF) by Casting Method for Electrodialysis (캐스팅법에 의한 전기투석용 고내구성 Polyvinylidene Fluoride (PVDF)계 양이온 불균질 이온교환막 제조 및 탈염특성)

  • Ko, Dae Young;Kim, In Sik;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • This study was carried out to prepare a heterogeneous cation exchange membrane by mixing polyvinylidene fluoride (PVDF), commercial cation exchange resin and sulfonated poly(phenylene oxide)(SPPO) in order to propose an optimum condition for the preparation, and to compare its properties with commercial membrane. Study results show that the ion exchange capacity and electrical resistance were outstanding when the ratio of polymer matrix was less than 30% comparing between PVDF-IER, PVDF-SPPO and PVDF-SPPO-IER. The tensile strength was confirmed that seemed a hard look was five times greater compared to the commercial heterogeneous membrane, despite the weak durability of PVDF resin. Therefore, when chemical and mechanical properties are considered, the optimum mixing ratio between PVDF, IER and SPPO was 30 : 70, at which electric resistance was measured as $3{\sim}5{\Omega}{\cdot}cm^2$, ion exchange capacity as 0.6~1.0 meq/g, while mechanical strength was in a range of $12{\sim}15kgf/cm^2$.

Hydrogelation Process Variables in Crystallization of Zeolite (Zeolite 결정 성장에 미치는 Hydrogel화의 영향)

  • 서정권;이광석;이정민;정필조
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.575-582
    • /
    • 1989
  • The effects of raw material feeding procedures and gelation temperatures on zeolite synthesis are investigated. Thus, the synthesis of zeolite 4A from sodium aluminate and sodium silicate solutions is chosen as a model reaction, for which equi-molar hydrogelation is performed with variation of feeding procedures and gelation temperatures. The formation of crystal nuclei, often being referred to as precursors, is induced under different conditions, the variation being examined by means of viscosity and water contents. The final products of zeolite 4A are evaluated by XRD, SEM morphology, particle size analysis and cation exchange capacity. Evidence shows that the viscosity of the initial products and their water contents are markedly influenced by the feeding methods of the reactant materials and by the gelation temperature. Further, it is found that the gelation at an elevated temperatures near 7$0^{\circ}C$ can be made possible through modification of mixing procedures. This provides convenient means of controlling the particle size of the final products. In this regard, a continuous flow-type mixing technique is proposed, which is demonstrated to be superior to the conventional batch-type mixings. The significance of this finding may lie in savings of equipment as well as energy costs, especialy on a large scale commercialization of zeolite production.

  • PDF

Studies on the Physico-Chemical Characteristics of Different Casing Materials Affecting Mycelial Growth and Yield of Cultivated Mushroom, Agaricus bisporus (Lange) Sing. (양송이의 균사생장(菌絲生長) 및 자실체(子寶體) 수량(收量)에 미치는 복토재료(覆土材料)의 이화학적(理化學的) 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Dong-Soo
    • The Korean Journal of Mycology
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1975
  • Since the importance of casing in fruit body formation of Agaricus bisporus has been emphasized, physico-chemical characteristics of casing materials were discussed by many workers and a mixture of peat and mineral soil as proper casing material has been adopted in many of mushroom growing countries. Because of limited resources of peat in Korea, it is necessary to find practical performance and substitutional materials for casing. The effect of casing on mycelial growth and mushroom yield of A. bisporus varied with materials, its combination and practices etc. The experiments to be discussed in this paper are concerned with pH and Ca of casing material which influence A bisporus, and changes of physico-chemical characteristics with mixing ratio of casing materials and its effect on A. bisporus. The optimum range of moisture content of each material, management of watering and application of physico-chemical characteristics casing materials was also investigated and re-use of weathered spent compost for casing material was described. 1. The effect of calcium on mycelial growth of A. bisporus at various pH in Halbschalentest showed different results with calcium sources. Best results were obtained around neutrality and fresh weight of fruit bodies grown in the range of pH 7 to 8 was highest among the tested levels. 2. Available moisture, pore space, organic matter, cation exchangeable capacity and exchangeable cation was increased by an increase of mixing ratio of peat in casing materials, while an adverse effect was obtained by addition of sand. 3. Mycelial growth on clay loam was more rapid at a lower bulk density of 0.75g/cc and at 20% moisture content on a dry weight basis at the same bulk density. 4. Mixing ratio of casing materials, 60 to 80 per cent by volume of peat mixed with 20 to 40 per cent of clay loam produced the highest yield of fresh fruit bodies and sand the lowest. However, per cent of open cap was highest in peat and lowest in sand. 5. Days required for fruit body initiation was shortened in mixtures of peat and clay loam by one to three days compared with other materials and the formation of flushes was clear. 6. The effect of some physico-chemical characteristics of casing materials on the fresh weight of fruit bodies were estimated by a multiple regression equation; Y=-923.86+$8.18X_1+8.04X_2+7.90X_3+0.12X_4+2.03X_5-0.82X_6-0.54X_7$ where $X_1,X_2,X_3,X_4,X_5,X_6,X_7$ are sand, silt, clay, available moistuer, porosity, organic matter and exchangeable cation respectively. The productivity of certain casing material could be predicted from this equation. 7. Fresh weight of fruit bodies was positively correlated with porosity exchangeable cation, organic matter, available moisture, silt and clay of materials; while sand was negatively correlated. On the contrary, sand was the unique factor reducing per cent of open cap. 8. Distribution of three phases of high productive casing material was concentrated in the range of 10 to 30 per cent solids, 15 to 30 per cent liquids, and 50 to 60 per cent in air volume. 9. Fresh weight of fruit bodies from peat was not affected with heavy watering but in clay loam and sandy loam severe crop losses occurred. Fresh weight of individual fruit was increased and open caps were decreased with heavy watering but light watering resulted in adverse effects: its effect was especially great in peat. 10. Optimum range of moisture content by weight on a dry basis was different with each casing material. To maintain optimum moisture content concerned with yield of fruit bodies and open cap, sandy loam and peat mixtures required daily watering of 0.6, 0.6 to 1. 2 and 1.2 to 2.4 liters per $3.3m^2$ of bed area, respectively. 11. Maximum yield of fruit body was recorded in the range of pF 2. 0 to 2. 5 of casing materials if organic matter content was below 4.2 per cent and in pF 1. 3 to 1.8 if above 7.1%. 12. pF curve of a certain casing material could be draws from moisture content at various pF values by multiple regression equations provided texture, organic matter and calcium of the casing material are given. Optimum moisture range of the casing materials also could be estimated by the equation. 13. It was possible to improve the phyico-chemical characteristics of clay loam and sandy loam by addition of weathered spent compost although the effect was less than in the case of peat. Fresh weight of fruit bodies wsa increased by addition of weathered spent compost but its effect was not as remarkable as peat. Accordingly, further studies will be required.

  • PDF

Development of the Direct Borohydride Fuel Cell for Portable Power Source (이동전원용 직접 붕소 연료전지 개발)

  • Yang, Tae-Hyun;Lee, Jung-Woo;Park, Jin-Soo;Lee, Won-Yong;Kim, Chang-Soo
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.68-74
    • /
    • 2007
  • The fuel cells for portable application are attracted using a liquid fuel such as methanol and chemical hydride solutions. Recently, DBFC [Direct Borohydride Fuel Cell] is a candidate for power of portable electronic devices. In this work, the anion exchange membrane and non-precious catalyst for the DBFC were concerned. Anion-exchange membrane was fabricated by amination of polysulfone followed chloromethylation. Non-precious catalysts such as raney-Ni and Ag were used as an anode and cathode catalyst. The optimum conditions of catalyst slurry mixing and MEA fabrication were developed. The single cell performance using anion exchange membrane and non-precious catalyst was evaluated and the results were compared with cation exchange membrane [Nafion membrane] and precious catalysts.

  • PDF

Recycling of Casts as an Adsorbent for Phosphorous Removal (인제거를 위한 흡착제로써 분변토 재활용)

  • 손희정;김은호;이용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.76-81
    • /
    • 1998
  • The technology of removing phosphorous, considered as one of the most important control nutrients causing eutrophication in various water bodies, have been investigated by many researchers. In this study, casts which can be obtained from the vermicomposting of mixing sewage sludge and cow manure, were used as an adsorbent, and their effects of several physical/chemical factors on the efficiencies of phosphorous adsorption were examined by batch tests. Generally, it could be showed that the efficiencies of phosphorous adsorption were very influenced by cast dosage, temperature and agitation speed. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider casts as a good adsorbent for removing phosphorous. But, because casts were relatively excellent in cation exchange, in point of waste recycling, we could know that they were capable of removing phosphorous. The SEM observation revealed that the evident variations were hardly seen, but particle sizes of cast were relatively bigger and showed forms of smaller plate than before.

  • PDF

Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells (연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.