• Title/Summary/Keyword: Cation Exchange Resin

Search Result 159, Processing Time 0.027 seconds

One-Step Purification of Melittin Derived from Apis mellifera Bee Venom

  • Teoh, Angela Ching Ling;Ryu, Kyoung-Hwa;Lee, Eun Gyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • The concern over the use of melittin in honey bee venom due to its adverse reaction caused by allergens such as phospholipase A2 ($PLA_2$) and hyaluronidase (HYA) has been an obstacle towards its usage. We developed a novel single-step method for melittin purification and the removal of $PLA_2$ and HYA. This study explores the influence of pH, buffer compositions, salt concentration, and types of cation-exchange chromatography resins on the recovery of melittin and the removal of both HYA and $PLA_2$. Melittin was readily purified with a strong cation-exchange resin at pH 6.0 with sodium phosphate buffer. It resulted in a recovery yield of melittin up to 93% (5.87 mg from a total of 6.32 mg of initial melittin in crude bee venom), which is higher than any previously reported studies on melittin purification. $PLA_2$ (99%) and HYA (96%) were also successfully removed. Our study generates a single-step purification method for melittin with a high removal rate of $PLA_2$ and HYA, enabling melittin to be fully utilized for its therapeutic purposes.

Effect of Coions on the Absorption of rare Earths in a Cation Exchange Resin (양이온 교환수지에 대한 희토류 원소의 흡수에 미치는 Coion의 영향)

  • Beom-Gyu Lee;In-sook Kim;Kang-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.18-23
    • /
    • 1983
  • To understand the abnormal absorption behavior of rare earths in cation exchange resins, the absorption for Ce(III), Tb(III) and $Cl^-$ ions in Dowex 50W-X2 have been investigated by spectrophotometry in the concentration range of $1{\sim}12$ M HCI and $HCl-HClO_4$ mixed solutions. The amount of $Cl^-$ ion absorbed shows that the ratio of amount of $Cl^-$ ions to that of rare earths does not exceed 10% in the concentration range of $6{\sim}8M$ HCl and decreased gradually to 3% at 2M HCl and 6% at 12M HCl. The ratio is further decreased with the fraction of $HClO_4$ in $HCl-HClO_4$ mixed solutions and the decrease is presumably due to the weak tendency to form a complex between rare earths and $Cl^-$ ions in a cation exchange resin. The effect of $ClO_4^-$ is expected to play a more important role than that of $Cl^-$ ions in the large absorption of rare earths.

  • PDF

Determination of Fission Products in Simulated Nuclear Spent Fuels by Cation.Anion Exchange Chromatography and Inductively Coupled Plasma Atomic Emission Spectrometry (양.음이온교환 크로마토그래피와 유도결합플라스마 원자방출분광법을 이용한 모의 사용후핵연료 중 핵분열생성물 분석)

  • Choi, Kwang Soon;Sohn, Se Chul;Pyo, Hyung Yeol;Suh, Moo Yul;Kim, Do Yang;Park, Yang Soon;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.446-452
    • /
    • 2000
  • The simulated nuclear spent fuel (SIMFUEL) containing the platinum group elements which will not be dissolved in a nitric acid was completely dissolved with a acid digestion bomb. The metallic elements separated in the SIMFUEL were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). Because the peaks of metallic elements were spectrally interfered by uranium spectrum, uranium and metallic elements were separated by cation exchange resin for Mo, Pd, Rh and Ru and by anion exchange resin for Ba, Ce, La, Nd, Rh, Sr, Y and Zr, respectively. The recovery of Mo, Pd, Rh and Ru after separation by cation exchange chromatography found to be 99-103% and anion exchange separation showed 96.5-107% of recovery except Y with the simulated solution whose concentration was similar to the spent nuclear fuel. The relative standard deviation of this method showed 1.3-6.7% in the SIMFUEL whose concentrations of metallic elements were between several $10^2-10^3$ppm.

  • PDF

A Study on Process Performances of Continuous Electrodeionization with a Bipolar Membrane for Water Softening and Electric Regeneration (바이폴라막을 이용한 연수용 전기탈이온의 공정 효율 및 전기적 재생에 관한 연구)

  • Moon, Seung-Hyeon;Hong, Min-Kyoung;Han, Sang-Don;Lee, Hong-Joo
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.210-218
    • /
    • 2007
  • CEDI-BPM(Continuous Electrodeionization-Bipolar Membrane) has advantages due to high ion permselectivity through ion exchange membranes and the production of $H^+$ and $OH^-$ ions on the bipolar membrane surfaces for regeneration of ion exchange resin during electrodeionization operation. In this study, hardness materials were removed by the CEDI-BPM without scale formation and the ion exchange resins were electrically regenerated during the operation. The adsorption characteristic of ion exchange resin surface, the influence of flow rate on the hardness removal and electric regeneration were investigated in the study. The removal efficiency of Ca was higher than that of Mg in the CEDI-BPM, which was related to the high adsorption capacity of Ca on the cation exchange resin. With increasing flow rate, the flux of Ca and Mg was enhanced by the permselectivity of a cation exchange membrane. In the electric regeneration of CEDI-BPM, it was shown that the regeneration efficiency was higher with a lower regeneration potential applied between cathode and anode.

The removal of heavy metals by crab shell in aqueous solution (게 껍질을 이용한 수중의 중금속 제거)

  • An, Hee-Kyung;Park, Byung-Yoon;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.409-414
    • /
    • 2000
  • In order to examine the availability and effectiveness of crab shell for the removal of heavy metals in aqueous solution the crab shell was compared with cation exchange resin(CER), zeolite granular activated carbon (GAC) and powdered activated carbon(PAC) on aspects of heavy metal removal capacity rate and efficiency. In the removal of Pb, Cd and Cr, the heavy metal removal capacity of crab shell was higher than those of any other sorbents (CER, zeolite, GAC, PAC) and the order of heavy metal removal capacity was crab shell>CER>zeolite>PAC GAC. However in the removal of Cu, the result of crab shell was slightly lower than that of CER. The initial heavy metal removal rate was affected by the sorts of sorbents and metals. In all heavy metals the heavy metal removal rate of crab shell was higher than those of any other sorbents. Under the heavy metal concentration of 1.0 mmole/$\ell$ the heavy metal removal efficiency of crab shell was maintained as 93~100% which was much higher than those of any other sorbents.

  • PDF

Reactive Dispersion and Mechanical Property of Dicyanate/Montmorillonite Nanocomposite (반응이 수반된 Dicyanate/Montmorillonite Nanocomposite의 분산과 물성특성 연구)

  • 장원영;이근제;남재도
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Dicyanate-clay nanocomposite has been prepared by a melt in-situ polymerization method for different modifiers and cation exchange capacity (CEC) values in order to study dispersion and mechanical property. Various dicyanate nanocomposites were prepared by using different MMT systems containing different intercalants which led to different initial gallery heights and packing density. Depending on compatibility between dicyanate and clays, the degree of dispersion varied. Dispersion of clay plates in dicyanate resin depended mainly on CEC and aliphatic chain length of modifier. The lower CEC and shorter aliphatic chain length of modifier gave the exfoliation structure. It was also found that the reactivity of intercalant with dicyanate resin was one of the key factors facilitating the intercalation/exfoliation process of dicyanate/MMT nanocomposites. Shear modulus of reaction-induced dicyanate nanocomposite was significantly increased.

The Cation Exchange Separation of Metal-Trien Mixed Complexes (금속-Trien 혼합착물의 양이온 교환수지상에서의 분리)

  • Yung-Kyu Park;Chul- Heui Lee;Mu-Kang Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.129-138
    • /
    • 1980
  • The formation constants of the mixed-ligand complexes in the Cd(II), Cu(II) and Pb(II)-Trien-OH system were studied by polarograph. The formation constant $(log{\beta}_{ij})$ was determined at $25^{\circ}C$ in the ionic strength of 0.1. It was also confirmed that the mixed ligand complexes in this system were formed above pH 10.2, 10.5 and 9.0 for Cu(II), Cd(II) and Pb(II) by the calculation of the distribution for complexes at the various pH. Masking of Cd(II) by conversion to anionic EDTA-complexes has been used to separate Cu(II) from Cd(II) through passage of a combined Trien-EDTA solution on an cationic resin column. The optimal condition for the separation of Cu(II) from Cd(II) is confirmed at the pH range above 9.0, not only by considering the theoretical equation of the conditional-exchange-constant of metal on the cation exchange resin,but also by calculating the distribution of the mixed ligand complexes in the resin at the various pH with computer. By analyzing the synthetic sample of Cu(II) and Cd(II) with a EDTA masking at pH 9.5, it is found that the results of the experiment are satisfied with the theoretical value.

  • PDF

Ionic Equilibria and Ion Exchange of Molybdenum(VI) from Strong Acid Solution

  • Lee, Man-Seung;Sohn, Seong-Ho;Lee, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3687-3691
    • /
    • 2011
  • Ion exchange experiments of molybdenum(VI) from strong HCl and $H_2SO_4$ solution have been done to investigate the existence of anionic complexes. The concentration of HCl and $H_2SO_4$was changed from 1 to 9 M. From the data on the complex formation of molybdenum in aqueous solution, a new distribution diagram of Mo(VI) was constructed in the pH range from zero to 10. AG 1 X-8, an anion exchange resin, and Diphonix, a cation exchange resin were used in the loading experiments. Ion exchange results indicate that anionic complexes of Mo(VI) begins to form from 3 M HCl and 1 M $H_2SO_4$ solution and the tendency to form anionic complexes is stronger in HCl than in $H_2SO_4$ solution. Our results can be utilized in the analysis of Mo(VI) in strong acid solution and in the design of a process to separate Mo(VI).

Development of Sustained Release Microcapsules Containing Ion Exchange Resin-Dextromethorphan Hydrobromide Complex (이온교환수지 - 브롬화수소산덱스트로메토르판 복합체의 서방성 마이크로캅셀 개발에 관한 연구)

  • Kim, Chong-Kook;Hwang, Su-Won;Hwang, Sung-Joo;Lah, Woon-Lyong
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 1989
  • In order to develop a pediatric liquid preparation with sustained release properties, dextromethorphan hydrobromide (DEXT) was complexed with strong cation exchange resin (CG 120) and the-complex was coated with Eudragit RS using a phase separation method by non-solvent addition. The effect of pH, ionic strength of the release medium and drug/resin ratio on the release rate of DEXT was studied. The release rate of free drug from the uncoated complex, and coated complexes with 9.5 and 18.5% Eudragit RS in artificial gastric juice were measured. The release rate from the uncoated complex was faster with higher pH, higher ionic strength of the release medium and higher drug/resin ratio. The release rate from the coated complex could be controlled by the amount of coating material, and the surface after release did not rupture into.

  • PDF

The Separation and Analysis of Babbitt Metal by the Cation Exchange Chromatographic Method (양이온 교환 크로마토그라피에 의한 Babbitt 금속의 분리 및 정량)

  • Sun Tae Kim;Kee Won Cha;Kee Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.366-369
    • /
    • 1971
  • The cation exchange chromatographic method for the analysis of Babbitt metal has been studied. The quantitative separation of the mixture of Sb, Cu, Pb, and Sn ions has been obtained by elution, through 5cm column of resin, Rexyn 101 (Na form, 100~200 mesh), using 0.1 M NaCl solution for Sb, pH 4.5 and pH 7 solution of 0.01 M Na-Citrate + 0.1 M $NaNO_3$ for Cu and Pb, and 2NHCl solution for Sn as eluent.

  • PDF