• Title/Summary/Keyword: Cathodoluminescence intensity

Search Result 28, Processing Time 0.023 seconds

Cathodoluminescence Enhancement of CaTiO3:Pr3+ by Ga Addition

  • Kang, Seung-Youl;Byun, Jung-Woo;Kim, Jin-Young;Suh, Kyung-Soo;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.566-568
    • /
    • 2003
  • The phosphor $CaTiO_3:Pr^{3+}$ attracts much attention as a low-voltage red phosphor because of its good chromaticity and intrinsic conductivity. The addition of Ga into this CaTiO₃:Pr led the luminance intensity to greatly enhance without the change of the wavelength for the electronic transition and the peak shape of it. The increase of the recombination rate of electron-hole pairs through the Ga ion doping, which was expected to play a role of a hole-trap center, is proposed to be one of the reasons for the enhancement of the cathodoluminescence intensity.

Enhanced Cathodoluminescence of KOH-treated InGaN/GaN LEDs with Deep Nano-Hole Arrays

  • Doan, Manh-Ha;Lee, Jaejin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.283-287
    • /
    • 2014
  • Square lattice nano-hole arrays with diameters and periodicities of 200 and 500 nm, respectively, are fabricated on InGaN/GaN blue light emitting diodes (LEDs) using electron-beam lithography and inductively coupled plasma reactive ion etching processes. Cathodoluminescence (CL) investigations show that light emission intensity from the LEDs with the nano-hole arrays is enhanced compared to that from the planar sample. The CL intensity enhancement factor decreases when the nano-holes penetrate into the multiple quantum wells (MQWs) due to the plasma-induced damage and the residues. Wet chemical treatment using KOH solution is found to be an effective method for light extraction from the nano-patterned LEDs, especially, when the nano-holes penetrate into the MQWs. About 4-fold CL intensity enhancement factor is achieved by the KOH treatments after the dry etching for the sample with a 250-nm deep nano-hole array.

A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor (박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구)

  • Kim, Joo-Han;Holloway Paul H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.541-546
    • /
    • 2006
  • In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

Synthesis of ZnO:Zn Phosphors with Reducing Atmosphere and Their Luminescence Properties (환원분이기에 따른 ZnO:Zn 형광체의 합성 및 그 형광 특성)

  • 김봉철;백종봉;한윤수;이남양;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Cathodoluminescence(CL) properties of ZnO:Zn green phosphor were investigated. ZnO:Zn phosphor was synthesized by varying reducing agents and firing temperatures. ZnS, charcoal and 5% H2 gas mixed with 95% N2 gas(5H2-95N2) were used as the reducing agent and atmosphere. The highest CL intensity of ZnO:Zn phosphor was observed under the condition of 5H2-95N2 atmosphere and firing temperature of 90$0^{\circ}C$ for 1h. Charocal and ZnO as reducing agents in the syntehsis of ZnO:Zn phosphor exhibited about 60% and 40%, respectively, of the CL intensity obtained with 5H2-95N2 atmosphere.

  • PDF

Size Dependence of the Photo- and Cathodo-luminescence of Y2O2S:Eu Phosphors

  • Sung, Hye-Jin;Ko, Ki-Young;Kim, Hyun Soo;Kweon, Seok-Soon;Park, Jong-Yun;Do, Young-Rak;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.841-846
    • /
    • 2006
  • $Y_2O_2S$:Eu phosphors were synthesized via solid-state reactions. $Y_2O_2S$:Eu phosphor particles of various sizes were obtained by varying the firing temperature and firing time. The photoluminescence properties of these $Y_2O_2S$:Eu phosphors were examined. In addition, the cathodoluminescence properties of the $Y_2O_2S$:Eu phosphors were examined for applied voltages of 3-8 kV. The relationship between the luminescence intensity and particle size of the$Y_2O_2S$:Eu phosphors was investigated. The photoluminescence and cathodoluminescence of the $Y_2O_2S$:Eu phosphors are affected differently by variations in particle size.

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

Luminescence Properties of Red Phosphor Gd2-x-yLixEuyO3 (적색 형광체 Gd2-x-yLixEuyO3의 발광 특성)

  • 조신호;변송호;김동국;박중철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.258-263
    • /
    • 2002
  • We present a new toed phosphor, $Gd_{2-x-y}Li_xEu_yO_3$ with superior luminescent Properties compared to the commercially available red phosphor $Y_2O_3:Eu^{3+}$. The phosphor, with a diameter of about $2\mu\textrm{m}$, consists of the psedospherical particles in a regular array. The photoluminescence measurements as a function of the laser power and the Eu mole fraction were performed at zoom temperature The luminescence intensity linearly increases as both the laser power and the Eu mole fraction Increase. As for the dependence on cathodoluminescence, the incorporation of Eu and Li ions into $Gd_2O_3$ lattice brings about an increase in luminescent efficiency. The highest emission intensity for the phosphor occurs at the applied voltage of 500 V, its value is larger than that of $Y_2O_3:Eu^{3+}$ powder by 70%.

Catchodoluminescence Study of GaN Films Grown by Low-Pressure Metalorganic Chemical Vapor Deposition (저압 유기 금속 화학 증착법으로 성장시킨 GaN박막의 캐소드루미네슨스에 대한 연구)

  • 홍창희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.63-68
    • /
    • 1999
  • In this paper, the correlation between the growth mechanism and the optical property in GaN films grown by low-pressure metalorganic chemical vapor deposition was characterized using room temperature cathodoluminescence spectroscopy. An intense near band-edge emission, 364nm, and deep-level emission, 550nm, were observed. The intensity of 364nm peak was increased with increasing the beam current. Also the peak position of 364nm emission was red-shifted and the intensity of 550nm peak was increased with increasing the accelerating voltage. It shows that the deep-level emission is strongly associated with crystalline defects in the GaN at early stage. The relationship between the microstructure and the deep level emission observed by scanning electron microscope images and cathodoluminescence spectra was carefully analyzed.

  • PDF

Synthesis and color-controllable luminescence in Dy3+-activated CaWO4 phosphors

  • Du, Peng;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.170.2-170.2
    • /
    • 2015
  • Enormous interest in trivalent rare-earth (RE) ions activated luminescent materials has been gaining owing to their promising applications in bio-imaging, solar cells, white light-emitting diodes and field-emission displays. Among these trivalent RE ions, dysprosium (Dy3+) was widely investigated due to its unique photoluminescence (PL) emissions. A series of Dy3+-activated CaWO4 phosphors were prepared by a facile high-temperature solid-state reaction method. The X-ray diffraction, PL spectra, cathodoluminescence (CL) spectra as well as PL decay curves were used to characterize the prepared samples. Under ultraviolet light excitation, the characteristic emissions of Dy3+ ions were observed in all the obtained phosphors. Furthermore, the PL emission intensity increased gradually with the increment of Dy3+ ion concentration, reaching its maximum value at an optimized Dy3+ ion concentration. Additionally, color-tunable emissions were obtained in Dy3+-activated CaWO4 system by adjusting the Dy3+ ion concentration and excitation wavelength. Ultimately, strong CL properties were observed in Dy3+-activted CaWO4 phosphors. These results suggested that the Dy3+-activted CaWO4 phosphors may have potential applications in the field of miniature color displays.

  • PDF

Fabrication and Characterization of ZnGa2O4 Phosphor Target (ZnGa2O4 형광체 타겟의 제작 및 특성분석)

  • Kim, Yong-Chun;Hong, Beom-Joo;Kwon, Sang-Jik;Kim, Kyung-Hwan;Park, Yong-Seo;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1347-1351
    • /
    • 2004
  • The ZnGa$_2$O$_4$ phosphor target was synthesized through solid-state reactions as calcine and sintering temperature in order to deposit ZnGa$_2$O$_4$ Phosphor thin film by rf magnetron sputtering system. The x-ray diffraction patterns of ZnGa$_2$O$_4$ phosphor target showed the position of (311) main peak. The cathodoluminescence(CL) spectrums of ZnGa$_2$O$_4$ phosphor target showed main peak of 370 nm to 400 nm, and maximum intensity at the calcine temperature of $700^{\circ}C$ and sintering temperature of 130$0^{\circ}C$. It was possible to prepare The ZnGa$_2$O$_4$ phosphor thin film with synthesized ZnGa$_2$O$_4$ phosphor target and The prepared ZnGa$_2$O$_4$ phosphor thin film showed the position of (311) main peak.