• 제목/요약/키워드: Cathodic Polarization

검색결과 148건 처리시간 0.024초

고분자물질들의 분극 특성: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), Poly(carbonate) (Polarization Characteristics of Polymers: Poly(vinylchloride), Poly(ethyleneterephthalate), Poly(propylene), and Poly(carbonate))

  • 최칠남;양효경
    • 대한화학회지
    • /
    • 제46권1호
    • /
    • pp.19-25
    • /
    • 2002
  • 우리는 고분자 물질들에 대해서 전위와 전류 밀도의 변화를 측정하였다. 온도와 pH를 포함하여 전위와 속도에 대한 영향을 주는 여러 요인들에 밝히기 위하여, 연구 결과들이 주위 깊게 조사되었다. 양극 해리에 대한 Tafel 기울기는 이들 조건 하에서 분극 효과로 결정되었다. 각 경우에 최적 조건들이 확립되었다. 두 번째 양극 전류 밀도 피크와 최대 전류 밀도는 상대적 분극 감도$(I_r/I_f)$로 지정되었다. 최적 조건에서의 분극 효과를 바탕으로, 질량 전달 계수$({\alpha})$는 양극 해리에 대한 Tafel 기울기에 의해서 결정되었다.

보일러용 STS 444재 용접부의 수소취성에 미치는습기의 영향 (Effect of Humidity on the Hydrogen Embrittlement of STS 444 Weld Zone for Boiler)

  • 임우조;최병일;윤병두
    • 수산해양교육연구
    • /
    • 제18권1호
    • /
    • pp.58-64
    • /
    • 2006
  • In order to examine the effect of humidity on hydrogen embrittlement of STS 444 weld zone for boiler with dry and wet welding conditions, this paper was carried out the accelerated hydrogen osmosis test and the electrochemical Tafel polarization test. In 0.5M $H_2SO_4$ + 0.01M $As_20_3$ solution, this test is added to load of $1400kg/cm^2$ together with hydrogen osmosis by current of $50 {mA/cm^2}$ for 60 min.. The electrochemical Tafel polarization test was carried out in 0.5M $H_2SO_4$ + 0.01M $As_20_3$ solution. Therefore, the effect of humidity on hydrogen embrittlement of STS 444 was considered. The main results are as following: On the basis of hydrogen embrittlement mechanism, that is, integrated electrochemical polarization characteristics with the established mechanism of hydrogen embrittlement, the reduction rate of corrosion current density of weld zone in the wet weld condition is larger than in the dry condition. We can nondestructively predict the degree of hydrogen embrittlement of STS 444 weld zone for boiler through the reduction rate of electrochemical corrosion current density.

Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance

  • Nam, Taehui;Son, Sunghoon;Kim, Eojn;Tran, Huong Viet Hoa;Koo, Bonyoung;Chai, Hyungwon;Kim, Junhyuk;Pandit, Soumya;Gurung, Anup;Oh, Sang-Eun;Kim, Eun Jung;Choi, Yonghoon;Jung, Sokhee P.
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.383-389
    • /
    • 2018
  • Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P $1.0cm^2$; PC $4.3cm^2$; PM $6.5cm^2$) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.

용융 (60 몰% $AlCl_3$-40 몰% NaCl) 염 속에서의 알루미늄전극의 반응속도론적 연구 (A Kinetic Study of the Aluminum Electrode in Molten 60 Mole Percent $AlCl_3$-40 Mole Percent NaCl at 453${\circ}K$)

  • G. F. Uhlig;T. N. Andersen;S. Johns;H. Eyring
    • 대한화학회지
    • /
    • 제18권6호
    • /
    • pp.400-407
    • /
    • 1974
  • 60몰%$AlCl_3$-40몰% NaCl의 용융염($453^{\circ}$<\TEX>K)속에든 알루미늄 전극에 대하여 전류-전압 편극곡선을 얻었다. 50mA/$CM^2$보다 큰 전류밀도에서는 옴-저항에 의한 전위차가 양극전위에 상당히 기여하므로 저항이 큰 $AlCl_3$(혹은 $AlCl_3$ 의 농도가 큰 멜트)의 층이 양극표면에 가까이 형성된다고 결론지었다. IR-전위차에 대하여 보정한 후의 Tafel곡선과 Allen-Hickling 곡선으로 부터 겉보기 transfer-coefficient, ${\alpha}_a$=(2.3RT/F)(dlogi/d${\eta}$)=$1.5{\pm}0.25$가 얻어졌다. 약 30mA/$cm^2$보다 큰 음극전류밀도에서는 느린 이온확산과 dendrite 생장 때문에 속도론적 측정이 방해 받았다.

  • PDF

양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성 (Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

장기간 자연 부식된 항만부두 강구조물의 방식특성 연구 (On the Corrosion Protection Characteristics of Port Steel Structures Corroded Naturally for a Long Period of Time)

  • 김기준;최영선
    • 한국항만학회지
    • /
    • 제12권1호
    • /
    • pp.145-154
    • /
    • 1998
  • Protection characteristics of the corroded steel pile which was served as a pier structure over 8 years in seawater have been examined in terms of corrosion potential, electrochemical impedance spectroscopy(EIS) and anodic/cathodic polarization curves. The steel structure was sectioned into two parts, waterline(splash zone, just above the seawater surface) and in-water(underwater), and protection characteristics for the two parts were investigated with the application of cathodic protection(CP) by sacrificial anodes using Zn and Al alloys. The main results obtained were as follows; (1) The corrosion potential of waterline zone was higher than that of in-water, which implied that the corrosion of waterline was more severe than that of in-water, (2) As a result of EIS examination, the transition period from the apparent CP to the substantial CP took about twenty to thirty days according to the corrosion condition.

  • PDF

국산동판을 사용한 리드프레임 도금기술에 관한 연구 (Electroplating on the Lead Frames Fabricated from Domestic Copper Plate)

  • 장현구;이대승
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Effect of RuCl3 Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

  • Cho, H.W.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of $RuCl_3$ concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of $RuCl_3$, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, $RuCl_3$ concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between $RuCl_3$ concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48*[$RuCl_3$ concentration, $M]^{-0.97}$.

천연해수 중 음극방식 응용 원리에 의해 제작한 Mg(OH)2 코팅막의 밀착성 및 내식성 (Adhesion and Corrosion Resistance of Mg(OH)2 Films Prepared by Application Principle of Cathodic Protection in Natural Seawater)

  • 이승효;김혜민;임경민;김병구;이명훈
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Cathodic current on a metal tends to increase the $OH^-$ neighboring to the metal surface, especially during electro-deposition in seawater. The increased pH at metal/seawater interface results in precipitation of brucite crystal structure-$Mg(OH)_2$ as following formula; $Mg^{2+}+2OH^-{\rightarrow}Mg(OH)_2$, that is typical mechanism of the main calcareous deposits-compound in electro deposited coating films. In this study, the effects of anode and current density on deposition rate, composition structure and morphology of the deposited films were systematically investigated by scanning electron microscopy(SEM) and x-ray diffraction(XRD), respectively in order to overcome the problems such as deposition rate and a weak adhesion between deposit film and metal surface. The adhesion and corrosion resistance of the coating films were also evaluated by anodic polarization test. The electro-deposited film formed by using AZ31-Mg anode had the most appropriate physical properties. Weight gain of electro-deposit films increased with increasing cathodic current. Electro-deposit prepared at $5A/cm^2$ current density shows better adhesion than that formed at $8{\sim}10A/cm^2$.

Schiff Bases as Anticorrosive Additives for Mild Steel Corrosion in Acid Media

  • Abirami, M.;Sasikala, S.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2009
  • The influence of Schiff bases on the corrosion inhibition of mild steel in 1 M $H_2SO_4$ have been investigated by weight loss, gasometry, impedance and polarization techniques. The results obtained reveal that these compounds act as good inhibitors. The inhibition efficiency of Schiff bases increased with concentration and synergistically increased on addition of chromate, sulphate and halide ions. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitors are of mixed type but they are more cathodic in nature. The adsorption of these compounds on mild steel surface for both the acids were found to obey Langmuir adsorption isotherm. The surface morphology was studied by SEM and UV reflectance spectra.