• 제목/요약/키워드: Cathodic

검색결과 754건 처리시간 0.027초

함정의 선체 부식에 의한 수중 전자기 신호 예측에 관한 연구 (A Study on Underwater Electro-magnetic Signature Prediction Due to Hull Corrosion of a Naval Ship)

  • 정현주;양창섭;주혜선;전재진
    • 한국군사과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.177-185
    • /
    • 2012
  • Corrosion currents flow through the seawater due to the different electrochemical potential between a hull and a propeller under the draft line of ship. Additionally, in order to protect the hull and other sensitive anodic parts of the ship from corrosion, the corrosion protection system, called impressed current cathodic protection(ICCP) equipment has been installed in most naval ships. Those currents could be harmful to the electromagnetic silencing of the naval ship because sea mines are triggered by even a feeble field value. In this paper, we described electric and corrosion related magnetic fields by ship's galvanic corrosion and a corrosion protection system, and prediction results of electric and corrosion related magnetic fields at any depth for the model ship.

음극방식기술의 최근 동향 (Recent Trend of Cathodic Protection Technology)

  • 김기준
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1998년도 춘계학술발표회 초록집
    • /
    • pp.7-7
    • /
    • 1998
  • 1812년 영국의 Humphrey Davy에 의해서 정립되기 시작한 음극방식(Cathodic P Protection)기술은 1900년대 중반이후의 유럽과 미국의 비약적인 발전을 거쳐 이제 세계적으로 철강의 방식법중 빼놓을 수 없는 주요한 기술이 되었다. 1970년대초부터 우리나라에 채용되기 시작한 음극방식기술은 현재 항만, 지중, 열교환기, 화학플랜트 등 다양한 분야에 적용되고 있다. 아직 국내의 아쉬운 점이라면 기술도입 이후 신기술의 개발노력이 거의 이루어 지지 못하고, 해외에서 개발된 새로운 장치나 신기술들을 산발적으로 수입/적용해 왔다는 것이다. 이제 우리나라도 산업의 분야에 따라서는 상당한 방식시설을 보유 하고 있음에도 아직도 국내의 환경에 적합한 음극방식기술의 개발과 심도있는 연구 및 기술축적이 부족한 형편이다. 그 원인으로는 광범위하게 발전해 가는 해외기술 에 대한 정보부족을 먼저 꼽을 수 있으며 국내의 기술 및 연구개발에 투자가 미약 하다는 것이 또하나의 이유라 하겠다. 본 강의는 상기 원인중 음극방식에 대한 해외기술정보를 소개하기 위한 것으로 해외에서 최근에 개발된 음극방식관련 각종 장치를 소개하고 전반적인 산업분야의 음극방식법 응용연구의 방향을 발표하며, 부가하여 읍국방식관련 각종 규정의 소개를 하고자 한다. 제한된 정보로 방식산업에 직접 관계하는 분에게는 부족한 기술 정보가 될지 모르나 전반적인 음극방식기술에 대한 실태를 파악하는데는 조그마한 도움이 될 수 있을 것이다.

  • PDF

A STUDY ON WEAR AND CORROSION RESISTANCE OF CrN$_{x}$ FILMS BY CATHODIC ARC ION PLATING PROCESS

  • Han, Jeon-G.;Kim, Hyung-J.;Kim, Sang-S.
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.545-548
    • /
    • 1996
  • $CrN_x$ films were deposited on SKD61 and S45C by cathodic arc ion plating process. In this study, the microstructure, microhardness, a hesion, wear and corrosion properties of the CrNx films were studied for various nitrogen partial pressures and the results were compared with those from the electroplated hard Cr. The crystal structure of the films was characterized by X-ray diffraction. Wear tests were performed under no lubricant condition at atmosphere by ball-on-disc type tribotester. Corrosion resistance of the films were studied by electrochemical corrosion test, measuring current demsity-potential curves. The results indicated that the $CrN_x$ films formed using ion plation method showed higer hardness and lower current density, friction coefficient than electroplated hard Cr. Consequently, the application of the CrNx coationgs by ion plating which is free of environmental pollution, is expected to improve lifetime of components in industrial practice.

  • PDF

자동차 박강판용 고강도 DP강 표면층의 수소거동 (The Hydrogen Behavior of Surface Layers of High Strength DP Thin Sheet Steels for Automobile)

  • 박재우;강계명
    • 한국가스학회지
    • /
    • 제14권6호
    • /
    • pp.38-43
    • /
    • 2010
  • 자원 부족과 환경규제의 강화에 따라 자동차 강판재의 고강도화와 박강판화가 주요 이슈로 대두되고 있다. 그러나 고강도 강판재 사용에 있어 수소취성은 기계적 성질 저하의 문제가 되고 있다. 본 연구에서는 개발중인 590MPa급 DP강을 대상으로 조성 및 조직특성에 따른 표면층에서의 수소의 거동에 대해 연구하였다. 수소주입은 음극전기분해법을 이용하여 강제 주입시켰고, 수소주입조건에 따른 수소주입량과 표면층 조직관찰 및 미소경도시험 결과의 관계로 부터 표면층의 수소거동을 평가하였다.

직류전기철도의 누설전류 간섭대책(2) 분포외부전원시스템 (Mitigation of Stray Current Interference from DC Electric Railroad(2) DICCP System)

  • 하윤철;배정효;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.273-275
    • /
    • 2005
  • The national need to establish a new stray current mitigation method to protect the underground metallic infrastructures in congested downtown area forced us to design and develop the distributed impressed current cathodic protection (DICCP) system. The main purpose of this system is to replace the stray current drainage bond methods, which is widely adopted by pipeline owners in Korea. Currently, forced drainage makes up about 85% of total drainage facilities installed in Korea because polarized drainage can neither drain perfectly the stray currents during normal operation of electric vehicle nor drain the reverse current during regenerative braking at all. The forced drainage, however, has been abused as an alternative cathodic protection system, which impresses currents from rails to the pipelines and accordingly uses the rails as anodes. As a result, it is necessary to consider a new method to both cathodically protect the pipelines and effectively drain the stray currents. In this paper, we describe the design parameters and installation schemes of DICCP system that can meet these demands.

  • PDF

음극아크증착법으로 합성한 다층박막의 국부부식 기구에 관한 연구 (A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition)

  • 김호건;안승호;이정호;김정구;한전건
    • 한국표면공학회지
    • /
    • 제36권4호
    • /
    • pp.301-306
    • /
    • 2003
  • Multilayered WC-Ti/suv $1-x/Al_{x}$ N coatings were deposited on AISI D2 steel using cathodic arc deposition (CAD) method. These coatings contain structural defects such as pores or droplets. Thus, the substrate is not completely isolated from the corrosive environment. The growth defects (pores, pinholes) in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion behavior of the coatings was studied in deaerated 3.5 wt.% NaCl solution using electrochemical techniques (potentiodynamic polarization test) and surface analyses (GDOES, SEM, AES, TEM). The porosity was calculated from the result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the $WC-Ti_{0.6}$ $Al_{0.4}$ N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and lowering the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion mechanisms can be classified into two basic categories: localized corrosion and galvanic corrosion.

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.

전기화학적 방법을 통한 다공성 코발트 박막 합성 (Preparation of Porous Cobalt Thin Films by Using an Electrochemical Method)

  • 하성혁;신헌철
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.312-321
    • /
    • 2020
  • Morphology of porous cobalt electro-deposits was systematically investigated as functions of cobalt precursors in the plating bath and applied cathodic current density with a special focus on cobalt nano-rod formation. It was proved that the concentration of cobalt precursor plays little effect on the morphology of cobalt electro-deposits at relatively low plating current density while it significantly affects the morphology with increasing plating current density. Such a dependence was discussed in terms of the kinetics of two competitive reactions of cobalt reduction and hydrogen evolution. Cobalt nano-rod structure was created at specific ranges of cobalt precursor content and applied cathodic current density, and its diameter and length varied with plating time without notable formation of side branches which is usually found during dendrite formation. Specifically, the nano-rod length was preferentially increased in relative short plating time (<15 s), resulting in higher aspect ratio of nano-rod with plating time. Whereas, both the nano-rod length and diameter were increased nearly at the same level in a prolonged plating time, making the aspect ratio unchanged. From the analysis of crystal structure, it was confirmed that the cobalt nano-rod preferentially grew in the form of single crystal on a dense poly-crystalline cobalt thin film initially formed on the substrate.

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Han, Jae-Ho;Lee, Jae-Bong;Van Phuong, Nguyen;Kim, Dong-Hyun
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.89-99
    • /
    • 2022
  • A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

Tribological and Corrosion Behavior of Multilayered $WC-Ti_{1-x}Al_xN$ Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • S.H. Ahn;J.H. Yoo;Park, Y.S.;Kim, J.G.;Lee, H.Y.;J.G. Han
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.31-32
    • /
    • 2001
  • Recently, many of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological and corrosion properties of tools and components. By using cathodic arc deposition, $WC-Ti_{1-x}Al_xN$ multilayers were deposited on steel substrates. Wear tests of four multiplayer coatings were performed using a ball-on-disc configuration with a linear sliding speed of 0.1m/s, 5N load. The tests were carried out at room temperature in airby employing AISI 52100 steel ball ($H_v=848N$) of 11mm in diameter. Electrochemical tests were performed using the potentiodynamic and electrochemical impedance spectroscopy (EIS) measurements. The surface morphology and topography of the wear scars of tribo-element and the corroded specimen have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with EDS. Results have showed an improved wear resistance and corrosion resistance of the $WC-Ti_{1-x}Al_xN$ coatings.

  • PDF